If | z2 - 1 | = | z |2 + 1, then z lies on
Answers
Answered by
3
2z+1=z*3
2z+1=3z
3z-2z=1
z=1
2z+1=3z
3z-2z=1
z=1
Answered by
2
Let $\;z=x+iy$
Then , $\;|z^{2}-1| = |z|^{2}+1\;$
$|x^{2}-y^{2}-1+i2xy | = |x+iy|^{2}+1$
$(x^{2}-y^{2}-1)^{2}+4x^{2}y^{2} =(x^{2}+y^{2}+1)^{2}$
$4x^{2}=0\;$ i.e x=0
Hence z lies on y-axis
Then , $\;|z^{2}-1| = |z|^{2}+1\;$
$|x^{2}-y^{2}-1+i2xy | = |x+iy|^{2}+1$
$(x^{2}-y^{2}-1)^{2}+4x^{2}y^{2} =(x^{2}+y^{2}+1)^{2}$
$4x^{2}=0\;$ i.e x=0
Hence z lies on y-axis
Similar questions