Math, asked by praneelypc, 10 months ago

If z2+1/z2=34 fund the value is z3+1/z3 using only the positive value of z+1/z

Answers

Answered by EuphoricEpitome
17

» Given:

z^2+\frac{1}{z^2} = 34

» To find:

the\:value\:of\:z^3+\frac{1}{z^3}

» We know that,

 (a+b)^2 = a^2+b^2+2ab\\ \\ \\ (a+b)^3 = a^3+b^3+3ab(a+b)

» Solution -

Finding value of z+\frac{1}{z}

 (a+b)^2 = a^2+b^2+2ab\\ \\ \\ by\: putting\:values\\ \\ \\ (z+\frac{1}{z})^2 = z^2+\frac{1}{z^2} +2(z\times\frac{1}{z}) \\ \\ \\ (z+\frac{1}{z})^2 = 34+2\\ \\ \\(z+\frac{1}{z})^2 = 36\\ \\ \\z+\frac{1}{z} = \sqrt{36}\\ \\ \\{\pink{\boxed{z+\frac{1}{z} = 6}}}

Finding value of z^3+\frac{1}{z^3}

(a+b)^3 = a^3+b^3+3ab(a+b)\\ \\ \\ by\: putting\:values\\ \\ \\ (z+\frac{1}{z})^3 = z^3+\frac{1}{z^3}+3(z\times\frac{1}{z})(z+\frac{1}{z})\\ \\ \\ (6)^3 = z^3+\frac{1}{z^3}+3(6)\\ \\ \\ 216 = z^3+\frac{1}{z^3}+18\\ \\ \\ z^3+\frac{1}{z^3} = 216-18 \\ \\ \\ {\purple{\boxed{z^3+\frac{1}{z^3} = 198}}}

Answered by khushi88474
1

Answer:

» Given:

z^2+\frac{1}{z^2} = 34z

2

+

z

2

1

=34

» To find:

the\:value\:of\:z^3+\frac{1}{z^3}thevalueofz

3

+

z

3

1

» We know that,

\begin{gathered} (a+b)^2 = a^2+b^2+2ab\\ \\ \\ (a+b)^3 = a^3+b^3+3ab(a+b)\end{gathered}

(a+b)

2

=a

2

+b

2

+2ab

(a+b)

3

=a

3

+b

3

+3ab(a+b)

» Solution -

Finding value of z+\frac{1}{z}z+

z

1

\begin{gathered} (a+b)^2 = a^2+b^2+2ab\\ \\ \\ by\: putting\:values\\ \\ \\ (z+\frac{1}{z})^2 = z^2+\frac{1}{z^2} +2(z\times\frac{1}{z}) \\ \\ \\ (z+\frac{1}{z})^2 = 34+2\\ \\ \\(z+\frac{1}{z})^2 = 36\\ \\ \\z+\frac{1}{z} = \sqrt{36}\\ \\ \\{\pink{\boxed{z+\frac{1}{z} = 6}}}\end{gathered}

(a+b)

2

=a

2

+b

2

+2ab

byputtingvalues

(z+

z

1

)

2

=z

2

+

z

2

1

+2(z×

z

1

)

(z+

z

1

)

2

=34+2

(z+

z

1

)

2

=36

z+

z

1

=

36

z+

z

1

=6

Finding value of z^3+\frac{1}{z^3}z

3

+

z

3

1

\begin{gathered}(a+b)^3 = a^3+b^3+3ab(a+b)\\ \\ \\ by\: putting\:values\\ \\ \\ (z+\frac{1}{z})^3 = z^3+\frac{1}{z^3}+3(z\times\frac{1}{z})(z+\frac{1}{z})\\ \\ \\ (6)^3 = z^3+\frac{1}{z^3}+3(6)\\ \\ \\ 216 = z^3+\frac{1}{z^3}+18\\ \\ \\ z^3+\frac{1}{z^3} = 216-18 \\ \\ \\ {\purple{\boxed{z^3+\frac{1}{z^3} = 198}}}\end{gathered}

(a+b)

3

=a

3

+b

3

+3ab(a+b)

byputtingvalues

(z+

z

1

)

3

=z

3

+

z

3

1

+3(z×

z

1

)(z+

z

1

)

(6)

3

=z

3

+

z

3

1

+3(6)

216=z

3

+

z

3

1

+18

z

3

+

z

3

1

=216−18

z

3

+

z

3

1

=198

Similar questions