Math, asked by ruved1002, 1 month ago

if zero's if the polynomial are 1/3x^2 + 12x + K -2 are reciprocal of each other find K class 10​

Answers

Answered by SparklingBoy
21

\large \bf \clubs \:  Given :-

Zeros of Polynomial  \bf \dfrac{1}{3}  {x}^{2}  + 12x + K - 2

are Reciprocal of Each other.

-----------------------

\large \bf \clubs \:   To  \: Find :-

  • The Value of K

-----------------------

\large \bf \clubs \:   Main  \:  Concept  :-

For A Quadratic Polynomial of the Form :

 ax² + bx + c

 \sf{Sum  \: of  \: Zeros  = - \dfrac{b}{a} } \\  \\ \sf{ Product \:  of \:  Zeros =  \frac{c}{a} }

-----------------------

\large \bf \clubs \:  Solution  :-

Let,

  • First Zero of the Polynomial be = α

  • Second Zero must be = 1/α

Hence ,

 \sf Product  \: of  \: Zeros  =\dfrac{K-2}{1/3}

 \sf\large:\longmapsto \alpha  \times  \dfrac{1}{ \alpha }  =\dfrac{K-2}{1/3}

:\longmapsto\dfrac{1}{3} = K - 2 \\  \\ :\longmapsto K = \dfrac{1}{3}+2=\dfrac{1+6}{3}\\\\ \purple{ \Large :\longmapsto  \underline {\boxed{{\bf K = \dfrac{7}{3}} }}}

 \Large\red{\mathfrak{  \text{W}hich \:\:is\:\: the\:\: required} }\\ \LARGE \red{\mathfrak{ \text{ A}nswer.}}

-----------------------

Answered by Anonymous
94

Let Zeoros of the Given Polynomial be -

 \large \bf a \:  \: and \:  \:  \dfrac{1}{a}

We Know,

 \sf a \times  \dfrac{1}{a}  =  \dfrac{k - 2}{ \dfrac{1}{3} }  \\  \\  \frac{1}{3} =  \sf k - 2 \\  \\  \sf k = 2 +  \frac{1}{3}   \\  \\  \huge :\implies  \bf \red{k =  \frac{7}{3} }

Which Is The Answer

Similar questions