Math, asked by Sushmita143, 7 months ago

. If zeroes a and ß of a polynomial X -7X +k are such that a- B =1 then the
value of k.​

Answers

Answered by ItzLoveHunter
27

\huge\bf\boxed{\boxed{\underline{\red{Question!!}}}}

Hello mate your question is wrong ..

okay you're question may be x² - 7x + k

\huge\bf\boxed{\boxed{\underline{\red{Answer!!}}}}

Given :

\huge\mathrm\pink{α \:− \:β = 1}

To find :

K value

\huge\mathrm\orange{\:Sum \:of \:zeroes}

\mathrm\orange{α - β = \frac{coefficient \:of \:x}{Coefficient \:of \:x²}}

The equation is x² - 7x + k

let us compare with ax² + bx + c = 0

a = 1 , b = -7 , c = k

\mathrm\orange{α + β = \frac{-b}{a}}

\mathrm\orange{α + β  = \frac{-(-7)}{1}}

\mathrm\orange{α + β = 7}

\huge\mathrm\purple{Product \:of \:zeroes}

\mathrm\purple{αβ = \frac{Coefficient}{Coefficient \:of \:x²}}

\mathrm\purple{αβ = \frac{c}{a}}

\mathrm\purple{αβ = \frac{k}{1}}

\mathrm\purple{αβ = k}

Now substitute the value in the formula :

\huge\bf\boxed{\boxed{\underline{\blue{(α + β)² - (α - β)² = 4αβ}}}}

\mathrm\blue{(7)² - ( 1)² = 4 (k)}

\mathrm\blue{49 - 1 = 4k}

\mathrm\blue{48 = 4k}

\mathrm\blue{\frac{48}{4} = k}

\mathrm\blue{k = 12}

\huge\bf\boxed{\boxed{\underline{\red{K = 12}}}}

Now let's find the zeroes :

\huge\mathrm\green{x² - 7x + 12}

\huge\mathrm\green{x² - 3x - 4x + 12}

\huge\mathrm\green{x ( x - 3 ) - 4 ( x - 3 )}

\huge\mathrm\red{(x-3) (x-4)}

So if x - 3 and x - 4

So x = 3 and x = 4

\huge\bf\boxed{\boxed{\underline{\red{Zeroes \:are \:x = 3 \:and \:x = 4}}}}

Similar questions