Math, asked by jenilpatel, 1 year ago

If zeroes of the polynomial p(x)=ax³+3bx²+3cx+d are in A.P.,prove that 2b³-3abc+a²d=0

Answers

Answered by parisakura98pari
12
F(X) = ax³ + 3bx² + cx+d = 0

Let three roots be p,q and r

A/Q : roots in A.P : p+r = 2q

Now,

Sum of roots = p+q+r = -3b/a  ⇒ 2q+q = 3q = -3b/a

 ⇒ q = -b/a

Products of roots = pqr = - d/a ⇒ pr (-b/a) = -d/a

 ⇒ pr = d/b

Sum of products of two roots = pq + qr + rp = 3c/a

⇒ q(p+r) + rp = 3c/a

⇒ q(2q) + d/b = 3c/a

⇒ 2(-b/a)² + d/b = 3c/a

⇒ 2b²/a² + d/b = 3c/a

⇒ 2b³+ da² = 3cab

⇒2b³ - 3abc + a²d = 0

Hence proved.




Answered by Anonymous
54

Answer:

  \sf \small  \:  \: \: let \:  \: p(x) = a {x}^{3}  + 3b {x}^{2}  + 3cx + d \:  \: and \:  \:  \alpha  \:  , \:  \beta  \\  \\  \sf \small \:  \:  \: , \: r \: their \: \:  three \:  \: zeroes \:  \: but \:  \: zero \:  \: are \:  \: in \:  \:  \\  \\  \sf \small \:  \:  \:  \: AP \\

______________

 \ \\  \quad \sf \: let \:  \alpha  = m - n, \:  \beta  = m \: , \: r = m + n \\  \\  \\  \quad \sf \: sum =  \alpha  +  \beta  + r =  \frac{ - b}{a}  \\  \\  \\  \quad \sf \: substitute \:  \: this \:  \: term, \: to \:  \: get = m =  \frac{ - b}{a}  \\  \\

Now taking two zeroes as sum

 \\  \qquad \quad \sf \:  \alpha  \beta  +  \beta  \: r +  \alpha r =  \frac{ - c}{a} \\  \\  \\ \rightarrow  \sf  \: (m - n)m + m(m + n) + (m + n) + (m - n) =  \\  \\  \sf \:    \frac{3c}{a}  \\

Now , solving this problem , we get

 \\  \sf \frac{3 {b}^{2} - 3ac }{ {a}^{2} }  =  {n}^{2}  \\  \\  \\ \sf Product \:  \:  \alpha  \beta  \: r =  \frac{ d}{a}  \\  \\  \\  \sf(m - n)m  \:  \:  (m + n) =  \frac{ - d}{a}  \\  \\  \\  \sf \: ( {m}^{2}  -  {n}^{2} )m =  \frac{ - d}{a}  \\  \\  \\  \sf \bigg[ \bigg( \frac{ - b}{a}  \bigg) {}^{2}  -  \bigg( \frac{ - 3 {b}^{2} - 3ac }{ {a}^{2} }  \bigg) {}^{2}  \bigg] \bigg( \frac{ - b}{a}  \bigg) =  \frac{ - d}{a }  \\  \\

Simplifying , we get

  \\  \\  \qquad \quad \sf \blue{2 {b}^{3}  - 3abc +  {a}^{2} d = 0} \\

Similar questions