If zeroes of the polynomial p(x)=ax³+3bx²+3cx+d are in A.P.,prove that 2b³-3abc+a²d=0
Answers
Answered by
12
F(X) = ax³ + 3bx² + cx+d = 0
Let three roots be p,q and r
A/Q : roots in A.P : p+r = 2q
Now,
Sum of roots = p+q+r = -3b/a ⇒ 2q+q = 3q = -3b/a
⇒ q = -b/a
Products of roots = pqr = - d/a ⇒ pr (-b/a) = -d/a
⇒ pr = d/b
Sum of products of two roots = pq + qr + rp = 3c/a
⇒ q(p+r) + rp = 3c/a
⇒ q(2q) + d/b = 3c/a
⇒ 2(-b/a)² + d/b = 3c/a
⇒ 2b²/a² + d/b = 3c/a
⇒ 2b³+ da² = 3cab
⇒2b³ - 3abc + a²d = 0
Hence proved.
Let three roots be p,q and r
A/Q : roots in A.P : p+r = 2q
Now,
Sum of roots = p+q+r = -3b/a ⇒ 2q+q = 3q = -3b/a
⇒ q = -b/a
Products of roots = pqr = - d/a ⇒ pr (-b/a) = -d/a
⇒ pr = d/b
Sum of products of two roots = pq + qr + rp = 3c/a
⇒ q(p+r) + rp = 3c/a
⇒ q(2q) + d/b = 3c/a
⇒ 2(-b/a)² + d/b = 3c/a
⇒ 2b²/a² + d/b = 3c/a
⇒ 2b³+ da² = 3cab
⇒2b³ - 3abc + a²d = 0
Hence proved.
Answered by
54
Answer:
______________
Now taking two zeroes as sum
Now , solving this problem , we get
Simplifying , we get
Similar questions