Math, asked by karajrandhawa4352, 3 days ago

If zeros of quadratic polinomiyals is X2(a+1)a+b are2and-3 ,than

Answers

Answered by ItzAshi
194

Step-by-step explanation:

{\large{\rm{\underline{\orange{Appropriate  \: Question :}}}}} \\

If zeros of the quadratic polynomial x² + (a + 1) x + b are 2 and -3 then

 \\ {\large{\rm{\underline{\orange{Solution :}}}}} \\

As given,

x² + (a + 1) x + b is the quadratic polynomial

2 and -3 are the zeros of quadratic polynomial

Therefore,

{\bold{\rm{:  \: ⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  2  \: + \:  (-3)  \: = \:  \frac{-(a \:  +  \: 1)}{1}}}} \\  \\

{\bold{\rm{: \:  ⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \frac{(a  \: +  \: 1)}{1}  \: = \:  1}}} \\  \\

{\bold{\rm{:  \: ⟹  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: a \:  +  \: 1  \: =  \: 1}}} \\  \\

{\bold{: \:  ⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}{\bold{\underline{\boxed{\rm{\red{a  \: =  \: 0}}}}}} \\  \\

Let's find the value of b,

{\bold{\rm{:  \: ⟹  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: 2 \:  ×  \: (-3)  \: = \:  b}}} \\  \\

{\bold{: ⟹ \:  \:  \:  \:  \:  \:  \:  \:  \:  \: }}{\bold{\underline{\boxed{\rm{\red{b  \: =  \: -6}}}}}} \\

Answered by mathdude500
41

Appropriate Question :-

If zeros of the quadratic polynomial x² + (a + 1) x + b are 2 and -3 then find the value of a and b

\large\underline{\sf{Solution-}}

Given that

\rm :\longmapsto\:2 \: and \:  -  \: 3 \: are \: zeroes \: of \:  {x}^{2} + (a + 1)x + b

We know,

\boxed{\red{\sf Product\ of\ the\ zeroes=\frac{Constant}{coefficient\ of\ x^{2}}}}

\bf\implies \:2 \times ( - 3) = \dfrac{b}{1}

\bf\implies \:b \:  =  \:  -  \: 6

Also,

\boxed{\red{\sf Sum\ of\ the\ zeroes=\frac{-coefficient\ of\ x}{coefficient\ of\ x^{2}}}}

\bf\implies \:2 + ( - 3) =  -  \:  \dfrac{(a + 1)}{1}

\bf\implies \: - 1 =  - (a + 1)

\bf\implies \: 1 =  a + 1

\bf\implies \:a \:  =  \: 0

\begin{gathered}\begin{gathered}\bf\: \bf :\longmapsto\:Hence-\begin{cases} &\sf{a \:  =  \: 0} \\ &\sf{b  \: =  \:  -  \: 6} \end{cases}\end{gathered}\end{gathered}

Additional Information :-

\red{\rm :\longmapsto\: \alpha , \beta , \gamma  \: are \: zeroes \: of \: a {x}^{3}  + b {x}^{2} +  cx + d, \: then}

\boxed{ \bf{ \:  \alpha  +  \beta  +  \gamma  =  - \dfrac{b}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  +  \beta  \gamma  +  \gamma  \alpha  = \dfrac{c}{a}}}

\boxed{ \bf{ \:  \alpha  \beta  \gamma  =  - \dfrac{d}{a}}}

Similar questions