Math, asked by bhupesh38, 1 year ago

if zsquare + 1 upon z square is equal to 18 find the value of Z cube minus 1 upon z cube using only positive value of that minus 1 by z​

Answers

Answered by Anonymous
6

Answer:

52

Step-by-step explanation:

z²+1/z²=18

subtracting 2 both sides

z²-2+1/z²=16

z²-2*z*1/z+1/z²=16

(z-1/z)²=16

z-1/z=±4

================================

taking z-1/z=4

Now z³-1/z³=(z-1/z)³+3*z*1/z(z-1/z)

=(4)³-3*1*(4)

=64-12

=52

Answered by Anonymous
32

\huge\mathfrak{\underline{\underline{QuestioN:}}}

If \sf{(z^2)+}\sf\frac{(1)}{(z^2)}=18, find the value of \sf{(z^3)-}\sf\frac{(1)}{(z^3)}, using only the positive value of \sf{z-}\sf\frac{1}{z}.

\huge\mathfrak\red{\underline{\underline{AnsweR:}}}

Given:

\sf{z^2} + \sf\frac{1}{z^2}=18

\implies\sf{z^2} + \sf\frac{1}{z^2}-2=18-2

\implies\sf{z^2} + \sf\frac{1}{z^2}-2.z.\sf\frac{1}{2}=16

\implies\sf{(z)-}\sf\frac{(1)}{z}^2=16=(4)^2

\implies\sf{z-}\sf\frac{1}{z}=4

Now, \sf{z^3}-\sf\frac{1}{z^3}=\sf{(z)-}\sf\frac{(1)}{(z)}\sf{(z^2+z.}\sf\frac{1}{z}+{1}{z^2)}

= \sf{z-}\sf\frac{1}{z}\times

\sf{z^2+1+}\sf\frac{1}{z^2}

= \sf{z-}\sf\frac{1}{z}=4\times\sf{z^2+}\sf\frac{1}{z^2}-2+3

By solving it we get,

=(4)[(4)²-3]

= (4)(16+3)

= (4)(19)

= 76.

Similar questions