Math, asked by gauri1721, 1 year ago

if2^x=5^y=10^z then prove 1/x+1/y=1/z​

Answers

Answered by Anonymous
21

\bold{ANSWER}

\rm{\frac{1}{x}+\frac{1}{y}=\frac{1}{z}}

\mathbb{EXPLANATION}

\rm{let\:2^x=5^y=10^z=k}

\rm{2^x=k}....\rm{Equation\:\:1}

\rm{5^y=k}....\rm{Equation\:\:2}

\rm{\left(10\right)^z=k}....\rm{Equation\:\:3}

\rm{2=k^{\frac{1}{x}}}.....\rm{Equation\:\:1}

\rm{5=k^{\frac{1}{y}}}....\rm{Equation\:\:2}

\rm{10=k^{\frac{1}{z}}}....\rm{Equation\:\:3}

\rm{10=2\times5}

\underline{Now\:put\:value\:of\:Equation\:1\:2\:And\:3\:in\:above\:Equation}

\rm{k^{\frac{1}{z}}=k^{\frac{1}{x}}\times\:k^{\frac{1}{y}}}

\rm{k^{\frac{1}{z}}=k^{\frac{1}{x}+\frac{1}{y}}}

\underline{Now\:compare\:powers\:of\:k\:we\:have}

\rm{\frac{1}{z}=\frac{1}{x}+\frac{1}{y}} \bold{HENCE\:PROVED}

Similar questions