Math, asked by devr24585, 11 months ago

IfA(5,8), B (1,4) and C (x, 2) then find the value of x.​

Answers

Answered by Anonymous
5

➖➖➖➖➖✨❇️✳️❇️✨➖➖➖➖➖

~~ÃѧËŘ~~

 \huge \boxed{ \fcolorbox{purple}{pink}{answer}} \\   \:  \\ ac =  \sqrt{ {(x - 5)}^{2}  +  {(2 - 8)}^{2} }  \\ ac =  \sqrt{ {x}^{2}  + 25 - 10x + 36}  \\ ac =  \sqrt{ {x}^{2} - 10x + 61 }  \\  \\ now \\ bc =  \sqrt{ {(x - 1)}^{2}  +  {(2 - 4)}^{2} } \\ bc =   \sqrt{ {x}^{2}   - 2x + 5}  \\ ac  = bc \\  \sqrt{ {x}^{2}  - 10x + 61 }  =  \sqrt{ {x}^{2} - 2x + 5 }  \\  \\ squaring \: on \: both \: side \\  \\  {x}^{2}  - 10x + 61 =  {x}^{2}  - 2x + 5 \\  \\  - 8x + 61 - 5 = 0 \\  \\  - 8x + 56 \\  \frac{ - 8x}{8}   +  \frac{56}{8}  \\ x - 7 \\ x = 7

☆we use distance formula in this question.☆

☆if c is equadistance fromA and B

➖➖➖➖✨✳️❇️❇️✳️✨➖➖➖➖

❇️✨HOPS THIS MAY HELPFUL FOR YOU❇️✨

Answered by harendrachoubay
4

The value of x is equal to - 1.

Step-by-step explanation:

The given three points A(5, 8), B(1, 4) and C (x, 2) are collinear.

To find, the value of  x = ?

We know that,

The condition of three points are collinear.

x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2})=0

⇒ 5(4 - 2) + 1(2 - 8) + x(8 - 4) = 0

⇒ 5(2) + 1(- 6) + x(4) = 0

⇒ 10 - 6 + 4x = 0

⇒ 4x + 4 = 0

⇒ 4x = - 4

⇒ x = - 1

Thus, the value of x is equal to - 1.

Similar questions