IfA=(6,0) and B (0,4) and 0 is the origin,
then the locus of P such that area of POB
= 2(area of POA)
Answers
Answered by
1
Step-by-step explanation:
Let locus of point be P(x,y)
Given A(6,0) and B(0,4)
POB = 2POA
√((x - 0)^2 + (y - 4)^2) = 2 √((x - 6)^2 + (y - 0)^2)
Squaring on both sides
(x)^2 + (y - 4)^2 = 4( (x - 6)^2 + (y)^2)
x^2 + y^2 + 16 - 8y = 4 ( x^2 + 36 - 12x + y^2)
x^2 + y^2 + 16 - 8y = 4x^2 + 144 - 48x + 4y^2
4x^2 + 4y^2 - 48x + 144 - x^2 -y^2 + 8y - 16 = 0
3x^2 + 3y^2 - 48x + 8y - 128 = 0
Similar questions