ifa+b+c=13 and a2 +b2+c2 = 69, find the value of ab + bc+ca.
a2 means a square
Answers
a+b+c = 13 (equation 1)
a^2+b^2+c^2 = 69 (equation 2)
there is an identity that states :-
a^2 + b^2 + c^2 = (a + b + c)^2 - 2(ab + bc + ca)
according to equation 1
a^2 + b^2 + c^2 = 69
so, 69 = (a + b + c)^2 - 2(ab + bc + ca)
according to equation 2
a+b+c = 13
so, 69 = (13)^2 - 2(ab + bc + ca)
⇒ 69 = 169 - 2(ab + bc + ca)
⇒ 69 - 169 = -2(ab + bc + ca)
⇒ -100 = -2(ab + bc + ca)
⇒ 2(ab + bc + ca) = 100
⇒ 2(ab + bc + ca)/2 = 100/2 (dividing both the sides by 2)
⇒ ab + bc + ca = 50
Hope it Helps
Question :-
If a + b + c = 14 and a² + b² + c² = 69 . Find the value of ab + bc + ca ?
Answer :-
Given :-
a + b + c = 14
a² + b² + c² = 69
Required to find :-
- Value of a² + b² + c² ?
Identity used :-
Solution :-
Given that :-
a + b + c = 13
consider this as equation 1
a² + b² + c² = 26
we need to find the value of ab + bc + ca
So,
Let's consider equation 1
a + b + c = 13
squaring on both sides
( a + b + c )² = ( 13 )²
Now expand the L.H.S side according to identity
The identity is
( x + y + z )² = x² + y² + z² + 2xy + 2yz + 2xz
So,
a² + b² + c² + 2ab + 2bc + 2ca = 169
Now take 2 common on the left side
a² + b² + c² + 2 ( ab + bc + ca ) = 169
[ a² + b² + c² ] + 2 ( ab + bc + ca ) = 169
Now,
Substitute the value of a² + b² + c² from equation 2
So,
69 + 2 ( ab + bc + ca ) = 169
Transpose 69 to the right side
2 ( ab + bc + ca ) = 169 - 69
2 ( ab + bc + ca ) = 100
ab + bc + ca = 100/2
ab + bc + ca = 50
Hence,
Value of ( ab + bc + ca ) = 50
Points to remember :-
These questions can be solved by taking the given statements as hints.
Some of the most used identities are ;
- ( a + b )³ = a³ + b³ + 3a²b + 3ab²
- ( a - b )³ = a³ - b³ - 3a²b + 3ab²
- ( a + b )² = a² + b² + 2ab
- ( a - b )² = a² + b² - 2ab