Math, asked by kritikriti055, 6 months ago

ifa²+b²=7ab log(1/3(a+b))=1/2(loga+logb)​

Answers

Answered by charishmaajonna586
0

Answer:

Remember that:

(a+b)2=a2+2ab+b2

and

log(a)+log(b)=log(ab)

So,

a2+b2=7ab

Adding 2ab on both sides :

a2+b2+2ab=7ab+2ab

(a+b)2=9ab

a+b=9ab−−−√=9–√⋅ab−−√=3ab−−√

a+b=3ab−−√

Multiply by 13 on both sides :

13(a+b)=13⋅3ab−−√

13(a+b)=ab−−√=(ab)12

13(a+b)=(ab)12

Log on both sides :

log(13(a+b))=log((ab)12)=12log(ab)

But 12log(ab)=12(log(a)+log(b)) . So,

log(13(a+b))=12(log(a)+log(b))

Answered by Arceus02
4

Given that,

 \sf { a}^{2}  + b {}^{2}  = 7ab

Adding 2ab to both sides,

 \sf  \longrightarrow { a}^{2}  + b {}^{2}  + 2ab = 9ab

 \sf  \longrightarrow  {( a + b)}^{2}  =  {(3 \sqrt{ab}) }^{2}

 \sf  \longrightarrow  a + b =3 \sqrt{ab}   \quad \quad  \dots(1)

\\

Now it is given to prove that,

 \sf \:  log \bigg \{\dfrac{1}{3} (a + b)  \bigg\} =    \dfrac{1}{2}    \bigg \{ log(a)  +  log(b)  \bigg  \}

Considering LHS,

 \sf \:  log \bigg \{\dfrac{1}{3} (a + b)  \bigg\}

Now from (1),

 \sf \longrightarrow log \bigg \{\dfrac{1}{3} \times  3 \sqrt{ab}  \bigg\}

  \sf \longrightarrow   log( \sqrt{ab} )

  \sf \longrightarrow   log(  {ab}^{1/2}  )

Now, we know that,

  \red{ \bigstar} \boxed{ \sf{ log( {y}^{x} )  = x log(y) }}

So, we can write,

  \sf \longrightarrow    \dfrac{1}{2} log(  ab )

Now, we know that,

   \orange{ \bigstar} \boxed{ \sf{ log( xy )  =  log(x)  +  log(y) }}

So, we can write,

  \sf \longrightarrow    \dfrac{1}{2} \bigg \{ log(  a )  +  log(b)  \bigg \}

\\

Considering RHS,

   \sf   \dfrac{1}{2}    \bigg \{ log(a)  +  log(b)  \bigg  \}

\\

Thus LHS = RHS.

Hence proved!

Similar questions