Math, asked by SurajSRKRocks6920, 9 months ago

Ifa²+b²+c²=20,and a+b+c=0,find ab+bc+ca.

Answers

Answered by Mairasejvar
3

Answer:

Step-by-step explanation:

Given a2+b2+C2=20

a+b+c=0

Using identity-

(a+b+c)2= a2+b2+C2+2ab+2bc+2c (a+b+c)2 =a2+b2+C2+2(ab+bc+ca)

(0)2 =20+2(ab+bc+ca)

- 20 =2(ab+bc+ca)

-20÷2 =(ab+bc+ca)

-10 = (ab+bc+ca) ans

Hope it will help you.

Answered by Anonymous
36

Answer:

We have,

 \tt \qquad {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2} +  { c}^{2}    \\  \qquad \tt + 2ab + 2bc + 2ca \\  \\  \\  \implies \tt {(a + b + c)}^{2}  =  {a}^{2}  +  {b}^{2}  +  {c}^{2}  \\  \tt + 2(ab + bc + ca) \\  \\  \\  \implies \tt {0}^{2}  = 20 + 2 \: (ab + bc + ca) \\  \\  \\  \implies \sf \frac{ - 20}{2}  =  \bigg \{ \frac{2(ab + bc + ca)}{2}  \bigg \} \\  \\  \\  \implies \tt \:  - 10 = ab + bc + ca \\  \\  \\  \implies \boxed {\tt ab + bc + ca =  - 10}

Similar questions