Math, asked by Dharanibojja11, 9 months ago

ifalfa and bita are the zeroes of quadratic polynomial f(x)=ax^2+bx+c then calculate (1) alfa^2+bita^2 (2) alfa^2/bita +bita^2/alfa​

Answers

Answered by BrainlyPopularman
5

{ \bold{ \underline{ \green{ANSWER}} :  - }} \\  \\ { \bold{ \underline{Given}} :  - } \\  \\ { \bold{ \blue{ \:  \:  \:  \: . \:  \: a \:  \: quadratic \:  \: equation \:  \: a {x}^{2} + bx + c =  0  }}}  \\  \\ { \bold{ \underline{ To  \:  \: find  } :  - }} \\  \\ { \bold{ \blue{ \:  \:   \:  \: \:  \: (1) \:  \:  { \alpha }^{2}  +  { \beta }^{2} }}} \\  \\{ \bold{ \blue{ \:  \:   \:  \:  \: \: (2)\:  \: \frac{ { \alpha }^{2} }{ \beta }   +  \frac{ { \beta }^{2} }{ \alpha } }}} \\  \\ { \bold{ \boxed{ \boxed{ \red{ \mathbb{ \huge  \star \:  \: SOLUTION  \: \star }}}}}} \\  \\ { \bold{ \blue{(1) \:  \:  { \alpha }^{2} +  { \beta }^{2} = \: ?  }}} \\  \\ { \bold{ \blue{ \:  \:  \implies  { { \alpha } }^{2}  +  { \beta }^{2} =  {( \alpha  +  \beta )}^{2}  - 2 \alpha  \beta  }}} \\  \\ { \bold{ \blue{  \: \implies \:  { \alpha }^{2} +  { \beta }^{2}   =  {(  - \frac{b}{a}) }^{2} - 2 (\frac{c}{a}  )} }} \\  \\ { \bold{ \blue{ \:  \:  \implies \:  { \alpha }^{2}  +  { \beta }^{2}  =  \frac{ {b}^{2} }{ {a}^{2} }  - 2 (\frac{c}{a}) }}} \\  \\ { \bold{ \blue{ (2) \:  \:  \:  \frac{ { \alpha }^{2} }{ \beta }  +  \frac{ { \beta }^{2} }{ \alpha }  =?}}} \\  \\ { \bold{ \blue{ \:  \:  \implies \frac{ { \alpha }^{2} }{ \beta  }  +  \frac{ { \beta }^{2} }{ \alpha }  =  \frac{ { \alpha }^{3}  +  { \beta }^{3} }{ \alpha  \beta } }}} \\  \\ { \bold{ \orange{ \:  \:  \:  \:  \: . \:  \: we \:  \: know \:  \: that \:  - }}} \\ \\  { \bold{ \orange{ \:  \:  \:  {( \alpha  +  \beta )}^{3}  =  { \alpha }^{3}  +  { \beta }^{3}  + 3 \alpha  \beta ( \alpha  +  \beta )}}} \\  \\ { \bold{ \blue{ \:  \: so \:  \: that - }}} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \: = \frac{ {( \alpha  +  \beta )}^{3} - 3 \alpha  \beta ( \alpha  +  \beta ) }{ \alpha  \beta }   }}} \\  \\ { \bold{ \blue{ \:  \:  \:  \:  \:  \:  \:   =   \frac{ {(  - \frac{b}{a}) }^{3}  - 3( \frac{c}{a})( -  \frac{b}{a} ) }{ (\frac{c}{a} )} }}}

{ \bold{ \underline{ \red{used \:  \: formula}} : -   }} \\  \\ { \bold{ \blue{ \:  \: (1) \:  \: sum \:  \: of \:  \: roots =  \alpha  +  \beta  =  -  \frac{b}{a} }}} \\  \\ { \bold{ \blue{ \:  \: (2) \:  \: product \:  \: of \:  \: roots =  \alpha  \beta  =  \frac{c}{a} }}}

Similar questions