Math, asked by bakkulu, 1 year ago

Ifcosec √5;find the value of cot cos (where theta is acute


TPS: do you mean cosec(theta)= root 5?
bakkulu: yes
TPS: how do you want thw answer? using properties or by basics?
bakkulu: formula

Answers

Answered by TPS
0
cosec Ф = √5
sin Ф = 1/cosec Ф = 1/√5

we know that sin² Ф + cos² Ф = 1
⇒cos² Ф = 1 - sin² Ф
⇒cos Ф = √(1 - sin² Ф)

⇒cos Ф =  \sqrt{1-  (\frac{1}{ \sqrt{5} } })^{2}  = \sqrt{1- \frac{1}{5} } = \sqrt{ \frac{4}{5} } = \frac{2}{ \sqrt{5} }

⇒cos Ф =  \frac{2}{ \sqrt{5} }

cot Ф = cos Ф / sin Ф =  \frac{2/ \sqrt{5} }{1/ \sqrt{5} } = 2

Anonymous: Check your answer for cot
TPS: already done brother!!
TPS: refresh..you will see the correct one
Anonymous: CotA=2
Anonymous: Okay my mistake
Answered by GowriShankar
0
If coesc Ф=√5,then hypotenuse =√5and opp side=1and adjacent side=2
cotФ=2,cosФ=2/√5
cotФ*cosФ=2*2/√5=4/√5
Similar questions