Ifcosecx
+cotx =k then prove that cos x=
k²-1/k²+1
Answers
Answered by
1
Solution :-
cosec x + cot x = k
⇒ cot x = k - cosec x
Squaring on both sides
⇒ cot² x = (k - cosec x)²
⇒ cot² x = k² + cosec² x - 2k. cosec x
⇒ 2k. cosec x = k² + cosec² x - cot² x
⇒ 2k. cosec x = k² + 1
[ Because cosec² x - cot² x = 1 ]
⇒ cosec x = (k² + 1)/2k = Hypotenuse/Opposite side
- Hypotenuse = k² + 1
- Opposite side = 2k
By Pythagoras theorem
⇒ (Adjacent side)² + (Opposite side)² = (Hypotenuse)²
⇒ (Adjacent side) ² = (Hypotenuse)² - (Opposite side) ²
⇒ (Adjacent side)² = (k² + 1)² - (2k) ²
⇒ (Adjacent side)² = (k²)² + 1² + 2k² - 4k²
⇒ (Adjacent side)² = (k²)² + 1² - 2(k²)(1)
⇒ (Adjacent side)² = (k² - 1)²
⇒ Adjacent side = k² - 1
cos x = Adjacent side /Hypotenuse = (k² - 1)/(k² + 1)
Hence proved
Similar questions