Math, asked by mbabyrahel, 11 months ago

ifcottheta =4/3 and theta is acute show that 3sintheta +4costheta=5​

Answers

Answered by skh2
0

 \cot( \theta) =  \frac{4}{3} \\  \\ \tan( \theta) =  \frac{3}{4}

Now,

From basic Trigonometric ratios we know that :-

 \tan(x) =  \frac{p}{b} \\  \\

Thus we can say that,

For given right Triangle :-

Perpendicular = 3k

Base = 4k

\rule{200}{2}

Applying Pythagoras Theorem :-

H²=P²+B²

H² = 9k² + 16k² = 25k²

H = 5k

\rule{200}{2}

We know that :-

 \sin(x) =  \frac{p}{h} \\  \\ \sin( \theta) =  \frac{3k}{5k} =  \frac{3}{5}

Similarly :-

 \cos( \theta) =  \frac{4}{5} \\  \\

\rule{200}{2}

To prove :-

3 \sin( \theta) + 4 \cos( \theta) = 5

LEFT HAND SIDE :-

 = 3 \times  \frac{3}{5} + 4 \times  \frac{4}{5} \\  \\  \\ =  \frac{9}{5} +  \frac{16}{5} \\  \\  \\ = \frac{25}{5} \\  \\  \\ =5 \\  \\ \\  = rhs

Hence, Proved.

\rule{200}{2}

Similar questions