Ifsin(A + B) = k sin (A - B), prove that:
(k - 1) cot B = (k + 1) cota.
Answers
i didn't understand the question
Question :- if sin(A + B) = k sin(A - B), prove that (k - 1) cot B = (k + 1) cot A ?
Solution :-
→ sin(A + B) = k * sin(A - B)
using :-
- In LHS :- sin(A + B) = sin A * cos B + cos A * sin B
- In RHS :- sin(A - B) = sin A * cos B - cos A * sin B
→ sin A * cos B + cos A * sin B = k * (sin A * cos B - cos A * sin B)
→ sin A * cos B + cos A * sin B = k * sin A * cos B - k * cos A * sin B
→ cos A * sin B + k * cos A * sin B = k * sin A * cos B - sin A * cos B
→ cos A * sin B (1 + k) = sin A * cos B (k - 1)
→ (cos A / sin A) (1 + k) = (cos B/sin B) (k - 1)
using :-
- cos θ / sin θ = cot θ
→ cot A (k + 1) = cot B (k - 1)
→ (k - 1) cot B = (k + 1) cot A (Proved)
Learn more :-
It sino + tano = m
tano - sino an
Then express the
values of m²-n² in terms
of M and N
https://brainly.in/question/13926306
tanA/(1-cotA) + cotA/(1-tanA)
https://brainly.in/question/16775946