Math, asked by taniyas82248, 6 months ago

Ift=rsinA cosC. y=rsinA sinC and z=rcosA then prove that
=x+y+​

Attachments:

Answers

Answered by alfezpatel
1

Answer:

Step-by-step explanation:

x= rsinAcosC ----1

y= rsinAsinC -----2

z= rcosA-----------3

squaring eqⁿ 1, 2 and 3, we get

x²= r²sin²Acos²C ----4

y²= r²sin²Asin²C -----5

z²= r²cos²A ------------6

Adding 4, 5 and 6, we get

x²+ y²+ z²= r²sin²Acos²C+ r²

sin²Asin²C+ r²cos²A

x²+ y²+ z²= r²sin²A(cos²C +sin²C)+

r²cos²A

x²+ y²+ z²= r²sin²A+ r²cos²A

-(sin²∅+cos²∅=1)

x²+ y²+ z²= r²(sin²A+ cos²A)

x²+ y²+ z²= r²

-(sin²∅+cos²∅=1)

Hence, proved. Hope this helps you

Similar questions