Ift=rsinA cosC. y=rsinA sinC and z=rcosA then prove that
=x+y+
Attachments:
Answers
Answered by
1
Answer:
Step-by-step explanation:
x= rsinAcosC ----1
y= rsinAsinC -----2
z= rcosA-----------3
squaring eqⁿ 1, 2 and 3, we get
x²= r²sin²Acos²C ----4
y²= r²sin²Asin²C -----5
z²= r²cos²A ------------6
Adding 4, 5 and 6, we get
x²+ y²+ z²= r²sin²Acos²C+ r²
sin²Asin²C+ r²cos²A
x²+ y²+ z²= r²sin²A(cos²C +sin²C)+
r²cos²A
x²+ y²+ z²= r²sin²A+ r²cos²A
-(sin²∅+cos²∅=1)
x²+ y²+ z²= r²(sin²A+ cos²A)
x²+ y²+ z²= r²
-(sin²∅+cos²∅=1)
Hence, proved. Hope this helps you
Similar questions