Math, asked by chjaswanth2007, 8 months ago

IfTantheta+ Sectheta
√3, then theta=​

Answers

Answered by shadowsabers03
4

Given,

\longrightarrow\sec\theta+\tan\theta=\sqrt3\quad\quad\dots(1)

We know that,

\longrightarrow \sec^2\theta-\tan^2\theta=1

\longrightarrow(\sec\theta+\tan\theta)(\sec\theta-\tan\theta)=1

From (1),

\longrightarrow\sqrt3\,(\sec\theta-\tan\theta)=1

\longrightarrow\sec\theta-\tan\theta=\dfrac{1}{\sqrt3}\quad\quad\dots(2)

Adding (1) and (2),

\longrightarrow(\sec\theta+\tan\theta)+(\sec\theta-\tan\theta)=\sqrt3+\dfrac{1}{\sqrt3}

\longrightarrow2\sec\theta=\dfrac{4}{\sqrt3}

\longrightarrow\sec\theta=\dfrac{2}{\sqrt3}

\longrightarrow\sec\theta=\sec\left(\dfrac{\pi}{6}\right)

Subtracting (2) from (1),

\longrightarrow(\sec\theta+\tan\theta)-(\sec\theta-\tan\theta)=\sqrt3-\dfrac{1}{\sqrt3}

\longrightarrow2\tan\theta=\dfrac{2}{\sqrt3}

\longrightarrow\tan\theta=\dfrac{1}{\sqrt3}

\longrightarrow\tan\theta=\tan\left(\dfrac{\pi}{6}\right)

We get \theta lies in first quadrant since \sec\theta and \tan\theta are positive.

So general value of \theta is,

\longrightarrow\underline{\underline{\theta=2n\pi+\dfrac{\pi}{6}}},\quad n\in\mathbb{Z}

And principal value of \theta is,

\longrightarrow\underline{\underline{\theta=\dfrac{\pi}{6}}}

Similar questions