Math, asked by abhinamkumawat596, 1 year ago

Ifx + 1/x= 6, find the value of x3 -1/x3​

Answers

Answered by Anonymous
76

 \sf given \: x +  \frac{1}{x}  = 6

cubing on both sides

 \sf \: {(x +  \frac{1}{x} )}^{3}  =  {6}^{3}

 \sf \: { {x}^{3} +  \frac{1}{{x}^{3}}}   + 3(x +  \frac{1}{x}) =  216

\sf \: { {x}^{3} +  \frac{1}{{x}^{3}}}   + 3(6) =  216

\sf \: { {x}^{3} +  \frac{1}{{x}^{3}}}   + 18 =  216

\sf \: { {x}^{3} +  \frac{1}{{x}^{3}}}    =  216 - 18

 \fbox{\sf \: { {x}^{3} +  \frac{1}{{x}^{3}}}    =  198}

 \huge\blue{\ddot\smile}


amanraj56: bhai kya answer 116√2 hai
amanraj56: 140√2
abhinamkumawat596: ha yahi hai
abhinamkumawat596: #farhanhaider_ ladkiyon se baat karne ki tammez nahi nahi he kya
Answered by amansharma264
21

EXPLANATION.

⇒ (x + 1/x) = 6.

As we know that.

Squaring on both sides of the equation, we get.

⇒ (x + 1/x)² = (6)².

⇒ x² + 1/x² + 2(x)(1/x) = 36.

⇒ x² + 1/x² + 2 = 36.

⇒ x² + 1/x² = 36 - 2.

⇒ x² + 1/x² = 34.

As we know that,

Formula of :

⇒ (x - 1/x)² = x² + 1/x² - 2(x)(1/x).

⇒ (x - 1/x)² = x² + 1/x² - 2.

Put the value of x² + 1/x² = 34 in the equation, we get.

⇒ (x - 1/x)² = 34 - 2.

⇒ (x - 1/x)² = 32.

⇒ (x - 1/x) = √32.

⇒ (x - 1/x) = 4√2.

As we know that,

⇒ (x - 1/x) = 6.

Cubing on both sides of the equation, we get.

⇒ (x - 1/x)³ = (6)³.

⇒ x³ - 3(x)²(1/x) + 3(x)(1/x)² - 1/x³ = 216.

⇒ x³ - 1/x³ - 3x + 3/x = 216.

⇒ x³ - 1/x³ - 3(x - 1/x) = 216.

Put the value of x - 1/x = 4√2 in the equation, we get.

⇒ x³ - 1/x³ - 3(4√2) = 216.

⇒ x³ - 1/x³ - 12√2 = 216.

⇒ x³ - 1/x³ = 216 + 12√2.

Similar questions