ifx=2+root 3,xy=1 then x/root2+rootx+y/root2-rooty
Answers
Answered by
230
Find the value of square roots of x and y. Then use rationalization of denominator to find the value of y.
x = 2 + √3
xy = 1
y = 1 /(2 + √3) = (2 - √3)/[(2 - √3)(2 + √3)
= 2 - √3
Let √x = √a + √b
then x = 2 + √3 = a + b + 2 √ab
so a + b = 2 and ab = 3 /4
(a - b)² = 4 - 3 = 1
a - b = 1 => a = 3/2 b = 1/2
so √x = (√3 +1)/√2
√y = 1/√x = (√3 - 1)/√2
Now substitute in the given expression:
x = 2 + √3
xy = 1
y = 1 /(2 + √3) = (2 - √3)/[(2 - √3)(2 + √3)
= 2 - √3
Let √x = √a + √b
then x = 2 + √3 = a + b + 2 √ab
so a + b = 2 and ab = 3 /4
(a - b)² = 4 - 3 = 1
a - b = 1 => a = 3/2 b = 1/2
so √x = (√3 +1)/√2
√y = 1/√x = (√3 - 1)/√2
Now substitute in the given expression:
kvnmurty:
click on thanks link above please
Answered by
68
Answer:
√2
Step-by-step explanation:
Given :
- x = 2 + √3
- xy = 1
⇒ xy = 1
⇒ y = 1 / x
⇒ y = 1 / ( 2 + √3 )
Rationalising the denominator
⇒ y = ( 2 - √3 ) / { ( 2 + √3 )( 2 - √3 ) }
⇒ y = ( 2 - √3 ) / { 2² - ( √3 )² }
⇒ y = ( 2 - √3 ) / ( 4 - 3 )
⇒ y = ( 2 - √3 ) / 1
⇒ y = 2 - √3
Using the identity given below
⇒ ( √x - √y )² = ( √x )² + ( √y )² - 2( √x )( √y )
⇒ ( √x - √y )² = x + y - 2√xy
⇒ ( √x - √y )² = 2 + √3 + 2 - √3 - 2√1
⇒ ( √x - √y )² = 4 - 2( 1 )
⇒ ( √x - √y )² = 4 - 2
⇒ ( √x - √y )² = 2
⇒ √x - √y = √2
Now let's find out the value of expression.
Hence the value of the expression is √2.
Similar questions
Math,
8 months ago
India Languages,
8 months ago
Social Sciences,
8 months ago
Math,
1 year ago
English,
1 year ago
Chemistry,
1 year ago
Chemistry,
1 year ago