Math, asked by nishachauhan1576, 9 months ago

ifx = 4+ √5 find the value of x² + 1/ x²​

Attachments:

Answers

Answered by janvirodge
2

hope it helps you.....to get your answer.....

Attachments:
Answered by tahseen619
5

62

Step-by-step explanation:

I can solve

1. Find the value of 1/x

2. Find the value of (x + 1/x)

3. Use Algebra Formula

4. Simplify till Answer

Given:

x = 4 +  \sqrt{15}

To Find:

 \tt \: The \: value \: of \:  {x}^{2}  +  \dfrac{1}{ {x}^{2} }

Solution:

x = 4 +  \sqrt{15}  \\  \\  \frac{1}{x}  =  \frac{1}{4 +  \sqrt{15}}  \\  \\  =  \frac{(4 -  \sqrt{15})}{(4 +  \sqrt{15})(4 -  \sqrt{15})}

[Rationalizing The denominator]

=  \frac{4 -  \sqrt{15}}{ {(4)}^{2}  -  {( \sqrt{15})}^{2} } \:  \:  \:   [ \because  \:  {a}^{2}  -  {b}^{2} = (a + b)(a - b)] \\  \\  =  \frac{4 -  \sqrt{15} }{16 - 15}  \\  \\  =  \frac{4 -  \sqrt{15} }{1}  \\  \\  \therefore \:  \frac{1}{x}  = 4 -  \sqrt{15}  \\  \\  \tt \: So, \: x +  \frac{1}{x}  = (4 +  \sqrt{15})+( 4 -\sqrt{15} ) \\  \\ \: x +  \frac{1}{x} =  4 + 4  = 8

Now,

 {x}^{2}  +  \frac{1}{ {x}^{2} } \:  \:  \: [ \because \:  {a}^{2} +  {b}^{2}  =  {(a + b)}^{2}  - 2ab]\\  \\ =  (x +  \frac{1}{x}) {}^{2}  - 2.x. \frac{1}{x}  \\  \\  = (x +  \frac{1}{x} ) {}^{2}  - 2 \\  \\  =  {(8)}^{2}  - 2 \\  \\  = 64 - 2 \\  \\  =  62

Similar questions