Math, asked by KuBo1061, 1 year ago

ifx=root3--root2/root3+root2,y=root3+root2/root3-root2,find the value of xsquare +xy+ysquare

Answers

Answered by caylus
1

Hello,


 x=\dfrac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}   =\dfrac{(\sqrt{3}-\sqrt{2})^2}{3-2} =3+2-2\sqrt{6} =5-2\sqrt{6} \\<br /><br />y=\dfrac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}   =\dfrac{(\sqrt{3}+\sqrt{2})^2}{3-2} =3+2+2\sqrt{6} =5+2\sqrt{6} \\<br /><br />x^2+y^2+xy=(5-2\sqrt{6})^2+(5+2\sqrt{6})^2+(5-2\sqrt{6})*(5+2\sqrt{6})\\<br /><br />=25+4*6-20\sqrt{6}+25+4*6+20\sqrt{6}+25-4*6\\<br />=2*49+1=99<br /><br />

Answered by SerenaBochenek
0

Answer:

\text{The value of } x^2+ y^2 + xy\text{ is 99.}

Step-by-step explanation:

Given that

x=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\:\:and\:\:y=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

\text{we have to find the value of } x^2+ y^2 + xy

First we find the value of xy

xy=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

=\frac{(\sqrt{3}-\sqrt{2})(\sqrt{3}+\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}

=\frac{(\sqrt{3})^2-(\sqrt{2})^2}{(\sqrt{3})^2-(\sqrt{2})^2}

=\frac{3-2}{3-2}=1

\text{now, we will find the value of }x^2

x^2=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}\times\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}

=\frac{(\sqrt{3}-\sqrt{2})^2}{(\sqrt{3}+\sqrt{2})^2}

=\frac{3+2-2\sqrt{3}\sqrt{2}}{3+2+2\sqrt{3}\sqrt{2}}

=\frac{5-2\sqrt{6}}{5+2\sqrt{6}}

=\frac{5-2\sqrt{6}}{5+2\sqrt{6}}\times\frac{5-2\sqrt{6}}{5-2\sqrt{6}}

=\frac{(5-2\sqrt{6})^2}{(5+2\sqrt{6})(5-2\sqrt{6})}

=\frac{25+24-20\sqrt{6}}{25-24}  

49-20\sqrt6

\text{now, we will find the value of }y^2

y^2=\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}\times\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}

=\frac{(\sqrt{3}+\sqrt{2})^2}{(\sqrt{3}-\sqrt{2})^2}

=\frac{3+2+2\sqrt{3}\sqrt{2}}{3+2-2\sqrt{3}\sqrt{2}}

=\frac{5+2\sqrt{6}}{5-2\sqrt{6}}

=\frac{5+2\sqrt{6}}{5-2\sqrt{6}}\times\frac{5+2\sqrt{6}}{5+2\sqrt{6}}

=\frac{(5+2\sqrt{6})^2}{(5+2\sqrt{6})(5-2\sqrt{6})}

=\frac{25+24+20\sqrt{6}}{25-24}  

49+20\sqrt6

Now add all three terms, we get

x^2+y^2+xy = 49 - 20\sqrt6 + 49 + 20\sqrt6 + 1 = 49 + 49 + 1 = 99

\text{Hence, the value of } x^2+ y^2 + xy\text{ is 99.}  

Similar questions