Math, asked by saru3822, 10 months ago

IfX-y=c,z-x=b,y-z=a and a^2+b^2+c^2=25 then x^2+y^2+z^2-xy-yz-zx=

Answers

Answered by Kioshin
0

Step-by-step explanation:

apply the values of a,b nd c in a^2 + b^2 + c^2 = 25

Attachments:
Answered by ambarkumar1
0

Answer:

x {}^{2}   + y {}^{2}  + z {}^{2}  - xz - yz - zx  = 12.5

Answer is 12.5

Step-by-step explanation:

Given,

x - y = c \\ z - x  = b \\ y - z = a

Adding all the three equations we get :

x - y + z - x + y - z = a + b + c \\ 0 = a + b + c

Now,

(a + b + c) {}^{2}  = a {}^{2}  + b {}^{2}  + c {}^{2}  + 2ab + 2bc + 2ca \\ (0) {}^{2}  = 25 + 2(ab + bc + ca) \\ 0  - 25 = 2(ab + bc + ca) \\  - 25 \div 2 = ab + bc + ca \\

Now substituting Values of a, b, c in above equation we get,

 - 12.5 = (y - z)(z - x) + (z - x)(x - y) + (x - y)(y - z) \\  - 12.5 = yz - xy - z {}^{2}  + xz - zy - x {}^{2}  + xy + xy - xz - y {}^{2}  + yz \\  - 12.5 =  - x {}^{2}  - y {}^{2}  - z {}^{2}  + xy + yz + zx \\  - 12.5 =  - (x {}^{2} + y {}^{2}   + z {}^{2}  - xy - yz - zx) \\ 12.5 = x {}^{2}  +  y {}^{2}  + z {}^{2}  - xy - yz - zx

Hope You Got the answer. :)

Similar questions