ify=xlog(x/a+bx)then prove that x3d2y/dx2=(xdy/dx-y)2
Attachments:
Answers
Answered by
60
y = x Log [x/(a+bx)] ---- (1)
Let x/(a+bx) = z ---- (2)
To prove x³ d²y/dx² = (x y' - y)²
y' = Log z + x * (a+bx)/x * a/(a+bx)²
= Log z + a/(a+bx) --- (3)
y'' = 1/z * a/(a+bx)² - ab/(a+bx)²
LHS = x³ y'' = a x² / (a+bx) - ab x³/(a+bx)²
= ax² / (a+bx)² * [a + bx - b x] = a²x² / (a+bx)²
RHS = (x y' - y)²
= [x Log z + ax/(a+x) - x Log z ]²
= a²x²/(a+x)²
LHS = RHS Proved.
Let x/(a+bx) = z ---- (2)
To prove x³ d²y/dx² = (x y' - y)²
y' = Log z + x * (a+bx)/x * a/(a+bx)²
= Log z + a/(a+bx) --- (3)
y'' = 1/z * a/(a+bx)² - ab/(a+bx)²
LHS = x³ y'' = a x² / (a+bx) - ab x³/(a+bx)²
= ax² / (a+bx)² * [a + bx - b x] = a²x² / (a+bx)²
RHS = (x y' - y)²
= [x Log z + ax/(a+x) - x Log z ]²
= a²x²/(a+x)²
LHS = RHS Proved.
kvnmurty:
:-)
Answered by
14
ANSWER:-----
x Log [x/(a+bx)] ---- (1)
Let x/(a+bx) = z ---- (2)
To prove x³ d²y/dx² = (x y' - y)²
y' = Log z + x * (a+bx)/x * a/(a+bx)²
= Log z + a/(a+bx) --- (3)
y'' = 1/z * a/(a+bx)² - ab/(a+bx)²
LHS = x³ y'' = a x² / (a+bx) - ab x³/(a+bx)²
= ax² / (a+bx)² * [a + bx - b x] = a²x² / (a+bx)²
RHS = (x y' - y)²
= [x Log z + ax/(a+x) - x Log z ]²
= a²x²/(a+x)²
hence prooved:)
Similar questions