English, asked by premm0915, 7 months ago

ige formed.
20. When an object is placed 20 cm from a concave mirror, a real image magnified three times is formed. Find
(a) the focal length of the mirror.
(b) Where must the object be placed to give a virtual image three times the height of the object?
​physics question

Answers

Answered by MaIeficent
12

Explanation:

Solution:-

\sf (a) \:  Object \: distance (u) = -20cm

\sf Magnification (m) = -3

\sf Image\: distance (v) = ?

\sf  As, \: Magnification = \dfrac{-v}{u}

\dashrightarrow \sf -3 = \dfrac{-v}{-20}

\dashrightarrow \sf - v = - 20 \times -3

\dashrightarrow \sf - v = 60

\dashrightarrow \sf v = -60cm

\sf \therefore Image \: distance \: (v) = -60cm

\sf \underline{Using\: mirror \: formula}

\sf \dashrightarrow \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}

\sf \dashrightarrow \dfrac{1}{f} = \dfrac{1}{-60} + \dfrac{1}{-20}

\sf \dashrightarrow \dfrac{1}{f} = \dfrac{-1 - 3}{60} = \dfrac{-4}{60}

\sf \dashrightarrow \dfrac{1}{f} = \dfrac{-1}{15}

\sf \dashrightarrow f = -15cm

\therefore \sf \underline{Focal\: length = -15cm}

\sf (b) \: Magnification \: (m)= 3

 \dashrightarrow \sf m = \dfrac{-v}{u}

 \dashrightarrow \sf 3 = \dfrac{-v}{u}

 \dashrightarrow \sf v = -3u

\sf \underline{Using\: mirror \: formula}

\sf \dashrightarrow \dfrac{1}{f} = \dfrac{1}{v} + \dfrac{1}{u}

\sf \dashrightarrow \dfrac{1}{-15} = \dfrac{1}{-3u} + \dfrac{1}{u}

\sf \dashrightarrow \dfrac{1}{-15} = \dfrac{-1 + 3}{3u}

\sf \dashrightarrow -15 = \dfrac{2}{3u}

\sf \dashrightarrow u  =  \dfrac{2 \times -15 }{3}

\sf \dashrightarrow u  = -10cm

Therefore, object should be placed 10cm infront of the mirror to give a virtual image three times the height of the object.

Similar questions