(ii)
2s²- (1+2√2)s +√2 relationship between alpha and beta
Answers
Answered by
0
Answer:
2s2 - (1 + 2√2) s + √2 = 2s2 - s - 2√2s + √2 = S(2s - 1) - √2(2s - 1) = (2s - 1)(s - √2) 2s - 1 = 0 ⇒ s = 1/2 s - √2 = 0 ⇒ s = √2 Therefore, Zeroes of the polynomial are 1/2 and √2. If α and β are the zeroes of the quadratic polynomial ax2 + bx + c, then α +β = − b/a αβ = c/a. Therefore, sum of the roots is (1 + 2√2) / 2 i.e. (1/2 + √2) Product of the roots is √2 / 2 = 1/√2.
Answered by
1
HAVE A NICE DAY!!!
HOPE IT HELPS YOU!!!
Attachments:
Similar questions