Math, asked by sahilkhan2783622, 8 months ago

(ii) 3x+4y= 10 and 2 x – 2y=2
(IV) x\2+y\3=-1 and x-y\3=3​

Answers

Answered by Anonymous
92

\color{red}{\large\underline{\underline\mathtt{Question:}}}

  • \mathtt{3x + 4y = 10 [Equation..1]}

\mathtt{2x - 2y = 2 [Equation..2]}

  • \mathtt{\dfrac{x}{2} + \dfrac{y}{3} = (-1) [Equation..1]}

\mathtt{\dfrac{x - y}{3} = 3 [Equation..2]}

______________________________________

\color{purple}{\large\underline{\underline\mathtt{To\:Find:}}}

\textit{The value of x and y}

______________________________________

\color{blue}{\large\underline{\underline\mathtt{Concept:}}}

  • \textit{In equation 1 , the equation can be solved} \textit{by using elimination method}
  • \textit{In equation 2 , the equation can be solved} \textit{by solving the equation first}\textit{and then using the elimination method}

______________________________________

\color{magenta}{\large\underline{\underline\mathtt{Solution:}}}

  • \mathtt{3x + 4y = 10}
  • \mathtt{2x - 2y = 2}

\textit{By using elimination method ,we get}

3x + 4y = 10 \times (2)

2x - 2y = 2 \times (3)

6x + 8y = 20

6x - 6y = 6

By\:subtracting

\cancel{+ 6x} + 8y = 20

\cancel{- 6x} - 6y = 6

____________

14y = 14

\therefore y = 1

.............................................................................................

\textsf{Putting the value in the equation 1, we get}

6x + 8y = 20

\Rightarrow 6x + 8 \times (1) = 20

\Rightarrow 6x + 8 = 20

\Rightarrow 6x = 20 - 8

\Rightarrow 6x = 12

\Rightarrow x = \dfrac{12}{6}

\Rightarrow x = \dfrac{\cancel{12}}{\cancel{6}}

\Rightarrow x = 2

\therefore x = 2

______________________________________

  • \mathtt{\dfrac{x}{2} + \dfrac{y}{3} = (-1)}

\mathtt{\dfrac{x - y}{3} = 3 }

\textit{By solving the equation ,we get}

 Equation..1

\Rightarrow \dfrac{3x + 2y}{6} = (-1)

\Rightarrow 3x + 2y = (-1) \times 6

\Rightarrow 3x + 2y = (-6) [Equation...(i)]

.............................................................................................

 Equation..2

\Rightarrow \dfrac{x - y}{3} = 3

\Rightarrow x - y = 3 \times 3

\Rightarrow x - y = 9 [Equation..(ii)

.............................................................................................

\textsf{By putting the two equations together , we get}

 3x + 2y = (-6)

 x - y = 9

\textit{By using elimination method ,we get}

 3x + 2y = (-6) \times 1

 x - y = 9 \times 2

 3x + 2y = (-6)

 2x - 2y = 18

By\:Adding

 3x \cancel{+ 2y} = (-6)

 2x \cancel{- 2y} = 18

__________________

5x = 12

x = \dfrac{12}{5}

\therefore x = \dfrac{12}{5}

.............................................................................................

\textsf{Putting the value in the equation (i) , we get}

\Rightarrow  3 \times \dfrac{12}{5} + 2y = (-6)

\Rightarrow \dfrac{12}{5} + 2y = \dfrac{(-6)}{3}

\Rightarrow 2y = \dfrac{(-6)}{3} - \dfrac{12}{5}

\Rightarrow 2y = \dfrac{(-30) - 36}{15}

\Rightarrow 2y = \dfrac{(-66)}{15}

\Rightarrow 2y \times 15 = (-66)

\Rightarrow 30y = (-66)

\Rightarrow y = \dfrac{(-66)}{30}

\Rightarrow y = \dfrac{\cancel{(-66)}}{\cancel{30}}

\Rightarrow y = \dfrac{(-33)}{15}

\Rightarrow y = \dfrac{\cancel{(-33)}}{\cancel{15}}

\Rightarrow y = \dfrac{(-11)}{5}

\therefore y = \dfrac{(- 11)}{5}

______________________________________

Answered by aryan073
6

Answer:

1) answer :

3x+4y=10

2x-2y=2 multiply 2 in the equation 2

4x-4y=8

solve this equation

7x=18

x=18/7

put the value in eqn 1 u get y OK friend

Similar questions