Math, asked by munsifalam0786, 10 months ago

(ii) 4^ x- 4^x-1= 24​

Answers

Answered by chitraesther2012
1

Answer:

x=5/2

Step-by-step explanation:

4^x-4^x×4^-1=24

4^x(1-1/4)=24

4^x(3/4)=24

4^x=24×4/3

4^x=32=2^5

2^2x=2^5

2x=5

x=5/2

Answered by Anonymous
9

Question:

Find the value of x if ;

 {4}^{x}  -  {4}^{x - 1}  = 24

Answer:

x = 5/2

Note:

 {a}^{x} \times  {a}^{y}  =  {a}^{x + y}

  \frac{ {a}^{x} }{ {a}^{y} } =  {a}^{x - y}

 { ({a}^{x})}^{y}  =  {a}^{x \times y}

 {a}^{x}  \times  {b}^{x}  =  {(a \times b)}^{x}

 \frac{ {a}^{x} }{ {b}^{x} }  =  { (\frac{a}{b}) }^{x}

 {a}^{ - x}  =  \frac{1}{ {a}^{x} }

 {a}^{0}  = 1

 If \:   \:  {a}^{x}  =  {a}^{y} ,  \:  \: then \:  \: x = y

Solution:

We have ;

  =  > {4}^{x}  -  {4}^{x - 1}  = 24 \\  =  >  {4}^{x - 1} \times (4 - 1) = 24 \\  =  >  {4}^{x - 1} \times 3 = 24 \\  =  >  {4}^{x - 1 }  =  \frac{24}{3}  \\  =  >  {4}^{x - 1}  = 8 \\  =  >  {( {2}^{2} )}^{x - 1}  =  {2}^{3}  \\  =  >  {2}^{2(x - 1)}  =  {2}^{3}  \\  =  > 2(x - 1) = 3 \\  =  > x - 1 =  \frac{3}{2}  \\  =  > x =  \frac{3}{2}  + 1 \\  =  > x =  \frac{3 + 2}{2}  \\  =  > x =  \frac{5}{2}

Hence,

The required value of x is 5/2 .

Similar questions