Math, asked by sweetheart2676, 1 year ago

(ii) A circle of radius 2 cm with centre B touches a circle of radius 10 cm
internally. Determine the length of a tangent segment AP drawn from the
centre A of the larger circle to the smaller circle.​

Answers

Answered by RvChaudharY50
16

Given :-

  • circle with centre B has radius = 2 cm.
  • circle with centre A has radius = 10 cm.
  • Both circle touches internally .

To Find :-

  • Determine the length of a tangent segment AP drawn from the centre A of the larger circle to the smaller circle. ?

Solution :-

from image we have :-

  • AD = radius of bigger circle = 10cm.
  • PB = BD = CB = radius of smaller circle = 2 cm.
  • AP = tangent to the smaller circle from the centre of bigger circle A.

we know that,

  • A tangent makes an angle of 90° with the radius of a circle .

So,

∠APB = 90° .

Now, in right angled ∆APB,

→ PB = 2 cm.

→ AB = AD - BD = 10 - 2 = 8 cm.

therefore,

→ AB² = AP² + PB² (By pythagoras theorem.)

→ 8² = AP² + 2²

→ AP² = 64 - 4

→ AP² = 60

→ AP = √60

→ AP = 215 cm. (Ans.)

Hence, Length of a tangent segment AP is 215 cm.

Learn more :-

*एक वृत्त पर एक बिंदु Q से खींची गयी स्पर्श रेखा की लंबाई 24 सेमी है तथा Q की केंद्र से दूरी 25 सेमी है। वृत्त की त्रिज्...

https://brainly.in/question/25249085

*एक घड़ी की मिनट की सुई की लंबाई 14 सेमी है। इस सुई द्वारा 5 मिनट में तय किए गए क्षेत्रफल को ज्ञात कीजिए।*

1️⃣ 33.51 से...

https://brainly.in/question/25960516

Attachments:
Similar questions