Math, asked by shivanjali1218, 2 months ago

ii) cos(180° - A) + cos (180° + B) + cos(180° + C)
- sin(90° + D) = 0
friend please answer fast is urgent​

Answers

Answered by charan555
2

Step-by-step explanation:

A,B,C and D are the angle of a cyclic quadrilateral

∴A+C=180

and B+D=180

⇒A=180−C and B=180−D. …(1)

we have to prove :

cos(180−A)+cos(180 +B)+cos(180 +C)−sin(90 +D)=0

LHS=cos(180 −A)+cos(180 +B)+cos(180 +C)−sin(90 +D)

= −cosA+[−cosB]+[−cosC]−cosD [∵cos(180−θ)=−cosθ,sin(90 +D)=cosD]

=−cosA−cosB−cosC−cosD

=−cos(180 −C)−cos(180 −D)−cosC−cosD [from (1)]

=−(−cosC)−(−cosD)−cosC−cos(D)

=cosC+cosD−cosD−cosC

=0

=RHS

∴ cos(180 −A)+cos(180 +B)+cos(180 +C)−sin(90 +D)=0

Hence proved.

Answered by Anonymous
1

\huge\mathcal{Lets \:Assume:-}

\implies{ABCD \:is \:a \:cyclic \:quadrilateral}

➡Since, the sum of the opposite angles of a cyclic quadrilateral is supplementary,

In quadrilateral \mathcal\red{ABCD}

A and C are opposite angles,

\implies{A + C = 180}

\implies{A = 180 - C}

Similarly, B and D are opposite angles,

B + D = 180

\implies{D = 180 - B}

\huge\mathcal\red{L.H.S}

cos(180+A)+cos(180-B)+cos(180-C)-sin(90-D)

\implies{cos(180+A)+cos(D)+cos(A)-sin(90-D)}

\implies{- cos A + cos D + cos A - cos D} ( Because, cos (180±x) = - cos x and sin (90 - x) = cos x )

\implies{0 = R.H.S}

\huge\mathcal\red{Hence \:Proved}

Similar questions