(ii) cos2A + cos 2B + cos 2 (A-B) + 1 = 4 cos A. cos B. cos (A-B)
Answers
Answered by
7
Answer:
cos 2A+cos2B- cos 2C= 1–4.sinA.sinB.cosC.
L.H.S.
=2.cos(2A+2B)/2.cos (2A-2C)/2-(2cos^2C-1).
= 2.cos(180°-C).cos(A-B)-2cos^2 C. +1.
= - 2.cosC.cos(A-B)-2.cos^2 C. +1
= 1 -2cosC[cos(A-B) +cosC].
= 1 -2.cosC[ cos(A-B)+cos{180°-(A+B)}]
= 1–2cosC.[cos(A-B)-cos(A+B)]
= 1–2.cosC.[2sinA.sinB ]
= 1. - 4.sinA.sinB.cosC. Proved.
MARK ME AS BRAINLIEST
Similar questions