(ii) Find the A.P. whose 1st term is 100 and the sum of the first six terms is 5 times
the sum of the next six terms.
Answers
Answer:
100,90,80,70,60,50,40,30,20
Step-by-step explanation:
refer to attachment
Answer:
The required AP is 100, 90, 80, 70, ....
Step-by-step-explanation:
We have given that,
The first term of an AP is 100.
∴ a = t₁ = 100
Now, we know that,
Sₙ = ( n / 2 ) [ 2a + ( n - 1 ) * d ] - - - [ Formula ]
Now, the sum of the first six terms of the AP,
S₆ = ( 6 / 2 ) [ 2a + ( 6 - 1 ) * d ]
⇒ S₆ = ( 6 / 2 ) [ 2a + 5d ]
⇒ S₆ = ( 6 / 2 ) ( 2a + 5d )
⇒ S₆ = 3 ( 2a + 5d )
⇒ S₆ = 6a + 15d
⇒ S₆ = 6 * 100 + 15d - - - [ Given ]
⇒ S₆ = 600 + 15d
⇒ S₆ = 15d + 600 - - - ( 1 )
Now, the sum of the first twelve terms of the AP,
S₁₂ = ( S₆ + S₆ⁿᵉˣᵗ )
⇒ S₆ⁿᵉˣᵗ = S₁₂ - S₆
⇒ S₆ⁿᵉˣᵗ = ( 12 / 2 ) [ 2a + ( 12 - 1 ) * d ] - ( 15d + 600 ) - - - [ From ( 1 ) ]
⇒ S₆ⁿᵉˣᵗ = 6 ( 2a + 11d ) - 15d - 600
⇒ S₆ⁿᵉˣᵗ = 12a + 66d - 600 - 15d
⇒ S₆ⁿᵉˣᵗ = 12a + 66d - 15d - 600
⇒ S₆ⁿᵉˣᵗ = 12a + 51d - 600
⇒ S₆ⁿᵉˣᵗ = 12 * 100 + 51d - 600
⇒ S₆ⁿᵉˣᵗ = 1200 + 51d - 600
⇒ S₆ⁿᵉˣᵗ = 51d + 1200 - 600
⇒ S₆ⁿᵉˣᵗ = 51d + 600 - - - ( 2 )
Now, from the given condition,
S₆ = 5 ( S₆ⁿᵉˣᵗ )
⇒ 15d + 600 = 5 ( 51d + 600 ) - - - [ From ( 1 ) & ( 2 ) ]
⇒ 15d + 600 = 255d + 3000
⇒ 255d - 15d = 600 - 3000
⇒ 240d = - 2400
⇒ d = - 2400 ÷ 240
⇒ d = - 10
Now,
a = t₁ = 100
d = - 10
∴ t₂ = t₁ + d
⇒ t₂ = 100 + ( - 10 )
⇒ t₂ = 100 - 10
⇒ t₂ = 90
Now,
t₃ = t₂ + d
⇒ t₃ = 90 + ( - 10 )
⇒ t₃ = 90 - 10
⇒ t₃ = 80
Now,
t₄ = t₃ + d
⇒ t₄ = 80 + ( - 10 )
⇒ t₄ = 80 - 10
⇒ t₄ = 70
∴ The required AP is 100, 90, 80, 70, ....