Math, asked by sanketnandane48, 4 days ago

ii) Find the A.P. whose 1st term is 100 and the sum of the first six terms is 5 times the sum of the next six terms.​

Attachments:

Answers

Answered by user0888
24

\Huge\text{$a_{n}=100-10(n-1)$}

\huge\textbf{Steps to Solution}

\Large\textrm{Let us denote: -}

\textrm{$S_{n}$, which is the sum of first $n$ terms}

\textrm{$a_{n}$, which is the $n$th term}

\Large\textrm{It is given that: -}

\text{$a_{1}=100$, $S_{6}=5(S_{12}-S_{6})$}

\Large\textrm{It follows that: -}

6S_{6}=5S_{12}

6\times\dfrac{6(200+5d)}{2}=5\times\dfrac{12(200+11d)}{2}

18\times(200+5d)=30\times(200+11d)

3(200+5d)=5(200+11d)

600+15d=1000+55d

15d-55d=1000-600

-40d=400

d=-10

\Large\textrm{So: -}

\textrm{$\boxed{a_{n}=100-10(n-1)}$ is the correct answer.}

\huge\textbf{Let us Verify}

\textrm{100, 90, 80, 70, 60, 50 and 40, 30, 20, 10, 0, -10}

\textrm{Each sum is 450 and 90. \underline{Hence verified.}}

\huge\textbf{Formulae Used}

\Large\textrm{$\bigstar$ Series of A.P - (I) $\bigstar$}

\cdots\longrightarrow\boxed{S_{n}=\dfrac{n\{2a+(n-1)d\}}{2}}

\textrm{It is obtained by the following equation, since $l=a+(n-1)d$.}

\Large\textrm{$\bigstar$ Series of A.P - (II) $\bigstar$}

\cdots\longrightarrow\boxed{S_{n}=\dfrac{n(a+l)}{2}}

Similar questions