Hindi, asked by ltz25, 3 months ago

(ii) Find the common difference of an AP whose first term is 5
and the sum of the first four terms is half the sum of the next
four terms.

Answers

Answered by farhaanaarif84
1

Answer:

Let d is common difference of AP

Now first 4 terms are 5, 5+d, 5+2d, 5+3d

and next 4 terms 5+4d, 5+5d, 5+6d, 5+7d

Given that, the sum of its first four terms is half the sum of the next four terms.

i.e.,

5 + 5+d + 5+2d + 5+3d=

2

5+4d + 5+5d + 5+6d + 5+7d

20+6d=

2

(20+22d)

20+6d=10+11d

d=2

Hence, the common difference of the given A.P. is 2

Answered by BrainlyBAKA
1

2 is the common difference of an AP .

Given:

a (first term of the arithmetic progression) = 5

S_{4}=\frac{1}{2}(S_{8}-S_{4})

To find:

d (Common Difference) = ?

Solution:

The general sequence of an AP is a ,a + d ,a + 2d ,a + 3d,…

Substituting a=5 then

5, 5 + d,5 + 2d,5 + 3d,5 + 4d,5 + 5d,5 + 6d,5 + 7d,,..

Let the first 4 terms be 5,5 + d,5 + 2d,5 + 3d

And let the next 4 terms be = 5 + 4d,5 + 5d,5 + 6d,5 + 7d

And \bold{S_{4}=\frac{1}{2}(S_{8}-S_{4})}----(1)

By substituting these values in (1)

\begin{array}{l}{5+5+d+5+2 d+5+3 d} \\ {\qquad \qquad=\frac{1}{2}(5+4 d+5+5 d+5+6 d+5+7 d)}\end{array}

20+6d=10+11d

10=5d

d=2

Therefore, the common difference = 2

\\\\\\

HOPE IT HELPS

PLEASE MARK ME BRAINLIEST

Similar questions