Math, asked by YAMUVEL, 5 days ago

ii) Find the value of `sin30^(@)+sin45^(@)+tan180^(@)`

Answers

Answered by patildhanraj594
1

Answer:

Answer:

\sin30^\circ+ \cos 45\circ+ \tan 180^\circ=\frac{\sqrt2+2}{2\sqrt2}sin30

+cos45∘+tan180

=

2

2

2

+2

Step-by-step explanation:

Given : Expression \sin30^\circ+ \cos 45\circ+ \tan 180^\circsin30

+cos45∘+tan180

To find : Evaluate the expression ?

Solution :

We know the values of trigonometric terms like,

\sin30^\circ=\frac{1}{2}sin30

=

2

1

\cos 45\circ=\frac{1}{\sqrt2}cos45∘=

2

1

\tan 180^\circ=0tan180

=0

Substitute the values in the expression,

\sin30^\circ+ \cos 45\circ+ \tan 180^\circsin30

+cos45∘+tan180

=\frac{1}{2}+\frac{1}{\sqrt2}+0=

2

1

+

2

1

+0

=\frac{\sqrt2+2}{2\sqrt2}=

2

2

2

+2

Therefore, \sin30^\circ+ \cos 45\circ+ \tan 180^\circ=\frac{\sqrt2+2}{2\sqrt2}sin30

+cos45∘+tan180

=

2

2

2

+2

Step-by-step explanation:

here's the answer mark as brainleast

Similar questions