Math, asked by swatisrivastavavaran, 18 days ago

(ii) How many litres can be contained by a cistern 3 m 5 dm long, 2 m 4 dm wide and 2 m deep​

Answers

Answered by mathdude500
11

\large\underline{\sf{Solution-}}

Given that,

Length of cistern = 3 m 5 dm

We know

\boxed{\rm{  \:1 \: dm \:  =  \: 0.1 \: m \: }} \\

So, using this,

Length of cistern = 3 m 5 dm = 3 + 5 × 0.1 = 3 + 0.5 = 3.5 m

Breadth of cistern = 2 m 4 dm = 2 + 4 × 0.1 = 2 + 0.4 = 2.4 m

Height of cistern = 2 m

We know,

Volume of cuboid of length l, breadth b and height h is given by

\boxed{\rm{  \: \: Volume_{(Cuboid)} \:  =  \: l \:  \times  \: b \:  \times  \: h \:  \: }} \\

As cistern is in the shape of cuboid.

So,

\rm \: Volume_{(Cistern)} = 3.5 \times 2.4 \times 2 \\

\rm \: Volume_{(Cistern)} = 7 \times 2.4  \\

\rm \: Volume_{(Cistern)} = 16.8 \:  {m}^{3}   \\

We know,

\boxed{\rm{  \:1 \:  {m}^{3} \:  =  \: 1000 \: litres \:  \:}}  \\

So, using this, we get

\rm \: Volume_{(Cistern)} = 16.8  \times 1000  \\

\rm\implies \:\rm \: Volume_{(Cistern)} = 16800 \: litres  \\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\: \: \: \: \: \: \begin{gathered}\begin{gathered} \footnotesize{\boxed{ \begin{array}{cc} \small\underline{\frak{\pmb{ \red{More \: Formulae}}}} \\ \\ \bigstar \: \bf{CSA_{(cylinder)} = 2\pi \: rh}\\ \\ \bigstar \: \bf{Volume_{(cylinder)} = \pi {r}^{2} h}\\ \\ \bigstar \: \bf{TSA_{(cylinder)} = 2\pi \: r(r + h)}\\ \\ \bigstar \: \bf{CSA_{(cone)} = \pi \: r \: l}\\ \\ \bigstar \: \bf{TSA_{(cone)} = \pi \: r  \: (l + r)}\\ \\ \bigstar \: \bf{Volume_{(sphere)} =  \dfrac{4}{3}\pi {r}^{3}  }\\ \\ \bigstar \: \bf{Volume_{(cube)} =  {(side)}^{3} }\\ \\ \bigstar \: \bf{CSA_{(cube)} = 4 {(side)}^{2} }\\ \\ \bigstar \: \bf{TSA_{(cube)} = 6 {(side)}^{2} }\\ \\ \bigstar \: \bf{Volume_{(cuboid)} = lbh}\\ \\ \bigstar \: \bf{CSA_{(cuboid)} = 2(l + b)h}\\ \\ \bigstar \: \bf{TSA_{(cuboid)} = 2(lb +bh+hl )}\\ \: \end{array} }}\end{gathered}\end{gathered}\end{gathered}

Similar questions