Math, asked by brundhadarshu, 1 month ago

(ii) If 5^x= 125^-1, find the value of: 3^x * 4^x​

Answers

Answered by 12thpáìn
6

Given

  • { \sf {5}^{x}  =  {125}^{ - 1} }

To Find

  •  \sf {3}^{x}  \times  {4}^{x}

Solution

{ \:  \:  \:  \:  \implies\sf {5}^{x}  =  {125}^{ - 1} }

{ \:  \:  \:  \:  \implies\sf {5}^{x}  =  {{5}}^{3 \times  - 1} }

{ \:  \:  \:  \:  \implies\sf {5}^{x}  =  {{5}}^{ - 3} }

  • On Comparing Both sides

{ \:  \:  \:  \:  \implies\sf x =  - 3 }  \\

  • Putting the values in 3^x × 4^x

 \:  \:  \:  \:  \:  \implies  \sf{3}^{ - 3}  \times  {4}^{ - 3}

 \:  \:  \:  \:  \:  \implies  \sf - 27 - 64

 \:  \:  \:  \:  \:  \implies  \sf - 91

Answered by Anonymous
41

\bigstar\mathbb\blue{ \:  \: QUESTION:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \small \tt{If  \:  {5}^{x} \:  =  {125}^{ - 1} , \:  find  \: the  \: value \:  of:   \: {3}^{x}   \times  {4}^{x} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \bigstar \: \mathbb\blue{ \:  \: SOLUTION:-}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

  \blue\rightarrow \small \tt{ {5}^{x} = {125}^{ - 1}  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \star \:  \small \tt  \blue{ \:  {a}^{ - m} =  \frac{1}{ {a}^{m} }  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue\rightarrow\tt{ {5}^{x} = \frac{1}{125} }

\blue\rightarrow \tt{ {5}^{x} = \frac{1}{ {5}^{3} } }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \star \:  \small \tt  \blue{ \:  {a}^{ - m} =  \frac{1}{ {a}^{m} }  }

 \star \: \small\tt\blue{In  \: the  \: below \:  step \:  we \:  just  \: reserve \:  the  \: above \uparrow  rule}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue\rightarrow \small \tt{ {5}^{x} =  {5}^{ - 3}  }

 \boxed {\underline{\blue\rightarrow \small \tt{x=   - 3 }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \star\small\tt\blue{ \: Now \:  find \:  the \:  value \:  of \:} \small \tt{  {3}^{x}  \times  {4}^{x} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue\rightarrow \small \tt{  {3}^{x}  \times  {4}^{x} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\small\tt\blue{Now, Substitute \:  the  \: value  \: of  \: x \:  which  \: is \:  -3}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue\rightarrow \small \tt{  {3}^{ - 3}  \times  {4}^{ - 3} }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

 \star\small\tt\blue{  \: {a}^{m}  \times  {b}^{m}  =  {ab}^{m} }

 \star \:  \small \tt  \blue{ \:  {a}^{ - m} =  \frac{1}{ {a}^{m} }  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\blue\rightarrow \small \tt{   {12}^{ - 3}  }

\blue\rightarrow  \tt{  \frac{1}{ {(12)}^{3} }  }

\blue\rightarrow  \tt{  \frac{1}{12 \times 12 \times 12}  }

\small\boxed{ \underline{\blue\rightarrow \tt{  \frac{1}{1728}  }}}

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

\small\tt\blue{Swipe  \: the  \: ans \:  to  \: left \:  to  \: right \:  to \:  see \:  full  \: ans}

Similar questions