Math, asked by molika888, 1 month ago

(ii) If A= 4x2 - 7x + 8 and B = x2-5x - 4 C=5x2 - 7x + 2 Find 2A + B+ 3C​

Answers

Answered by swagata245
0

Answer:

=> 2A + B + 3C

=> 2(4x2 - 7x + 8) + (2x - 5x - 4) + 3(5x2 - 7x + 2)

=> 2(8 - 7x + 8) + (-7x - 4) + 3(10 - 7x + 2)

=> 2(16 - 7x) - 7x - 4 + 3(12 - 7x)

=> 32 - 14x - 7x - 4 + 36 - 21x

=> 32 + 36 - 4 - 14x - 7x - 21x

64 - 42x

Hope this helps you. pls mark me brainliest.

Answered by MathHacker001
9

\large\bf\underline\red{Answer  \: :-}

Given :

  • A = 4x² - 7x + 8
  • B = x² - 5x - 4
  • C =5x² - 7x + 2

To find :

  • 2A + B + 3C

First we find 2A

\sf\longrightarrow{2(4x {}^{2} - 7x + 8 )}  \:  \: \\  \\ \bf\longrightarrow \red{8x {}^{2} - 14x + 16 }

Now we find 3C

\sf\longrightarrow{3(5x {}^{2}  - 7x - 4)} \:  \:  \:  \:  \\  \\ \bf\longrightarrow \red{15x {}^{2}  - 21x  - 12}

We have,

2A = 8x² - 14x + 16

B = x² - 5x - 4

3C = 15x² - 21x - 12

We have to find,

2A + B + 3C

\small\sf\rightarrow{8x {}^{2} - 14x + 16 + x {}^{2}  - 5x - 4 + 15x {}^{2}  - 21x - 12 } \\  \\ \small\sf\rightarrow{8x {}^{2}  + x {}^{2} + 15x {}^{2}  - 14x - 5x - 21x + 16 - 4 - 12 }  \\  \\ \small\sf\rightarrow{24x {}^{2} - 40x + 16 - 16 } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small\sf\rightarrow{24x {}^{2} - 40x \:   \:  \cancel{ + 16} \:  \:  \cancel{ - 16} } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\ \small\bf\rightarrow\red{24x {}^{2} - 40x } \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Answer is : 24x² - 40x

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions