Math, asked by msarwadnya, 3 months ago

(ii) If tan theta
12/5
then find the value of
1 + sin theta / 1 - sin thrta


Answers

Answered by Aryan0123
13

Solution:

\tt{tan \theta = \dfrac{12}{5}}\\\\

\leadsto \tt{\dfrac{Opposite \: side}{Adjacent \: side} = \dfrac{12}{5}}\\\\

So,

  • Opposite side = 12 cm
  • Adjacent side = 5 cm

By Pythagoras Theorem,

(AC)² = AB² + BC²

⇒ AC² = 12² + 5²

⇒ AC² = 144 + 25

⇒ AC²= 169

⇒ AC = √169

AC = 13 cm

\sf{sin \theta = \dfrac{Opposite \:side}{Hypotenuse} = \dfrac{AB}{AC} = \dfrac{12}{13}}\\\\

\sf{\dfrac{1 + sin \theta}{1 - sin\theta}= \dfrac{1 + \dfrac{12}{13}}{1 - \dfrac{12}{13}}= \dfrac{\dfrac{25}{13}}{\dfrac{1}{13}}= \dfrac{25}{13} \times \dfrac{13}{1} = 25}\\\\

1 + sinθ / 1 - sinθ = 25

Attachments:
Answered by TheBrainlyStar00001
62

Given :

 \\  \qquad \bull  \:  \: \underline{ \boxed {\tt tan \:  \theta \:  \implies \:  \dfrac{12}{5} }} \:   \:  \large\star \\  \\

To Find :

  \\  \\  \qquad   \bull  \:  \:  \underline{ \boxed{ \tt \:  \frac{1 +  sin \:  \theta}{1  -   sin \:  \theta} }} \:  \:  \large \star\\  \\

Solution :

From the above figure,

➠ \:  \:  \tt \: AC \:  =  \:   \sqrt{(AB) {}^{2}  + (BC) {}^{2} }  \\  \\

➠ \:    \tt\sqrt{12 {}^{2} \:  +  \: 5 {}^{2}  }  \\

 ➠\:  \tt\sqrt{144+5^{2}}  \\

➠ \:  \tt\sqrt{144+25}  \\

➠ \:  \tt\sqrt{169}  \\

 \underline{ \boxed { \color{purple}{  \frak{➯ \:13 }}}} \:  \:  \bigstar

Then,

 :  \implies  \tt sin \:  \theta \:  =  \:  \dfrac{12}{13}  \\  \\

Therefore,

 :  \implies  \tt \:  \dfrac{1 +  sin \:   \theta}{1  -   sin \:  \theta} \: ➠ \:  \dfrac{1 +  \frac{12}{13} }{1 - \frac{12}{13}}  \\  \\

➯\:\tt\dfrac{\frac{13}{13}+\frac{12}{13}}{1-\frac{12}{13}}  \\ \\

➯\:\tt\dfrac{\frac{13+12}{13}}{1-\frac{12}{13}}  \\  \\

➯\:\tt\dfrac{\frac{13+12}{13}}{1-\frac{12}{13}}  \\  \\

➯\:\tt\dfrac{\frac{25}{13}}{\frac{13}{13}-\frac{12}{13}}  \\  \\

➯\:\tt\dfrac{\frac{25}{13}}{\frac{13-12}{13}}  \\  \\

➯\:\tt\dfrac{\frac{25}{13}}{\frac{1}{13}}  \\  \\

➯\:\tt\dfrac{25}{ \cancel{13}}\times  \cancel{13 } \\  \\

 \underline{ \boxed { \color{purple}{  \frak{➠ \:25 }}}} \:  \:  \bigstar \\  \\

.°. Hence, the value of the given expression is 25.

✰ Hope it helps ✰

Attachments:
Similar questions