(ii) If x + y = 9 and xy = 20 , then the value of x^2 - xy +y^2 is
Answers
Answered by
1
Answer:
41
Step-by-step explanation:
Given : x+y=9 and xy=20
To Find: the value of x²+y²
Solution:
Identity : (x+y)^2=x^2+y^2+2xy
We are given that x+y=9 and xy=20
Substitute the values .
(9)^2=x^2+y^2+2(20)
81=x^2+y^2+40
81-40=x^2+y^2
41=x^2+y^2
Hence the value of x²+y² is 41
Answered by
7
ANSWER :–
▪︎ x² - xy + y² = 21
EXPLANATION :–
GIVEN :–
• x + y = 9
• xy = 20
TO FIND :–
• x² - xy + y² = ?
SOLUTION :–
= x² - xy + y²
• We should write this as –
= x² - xy + y² + 2xy - 2xy
= x² + 2xy + y² - 3xy
• We know that –
⇒ (a + b)² = a² + b² + 2ab
• So that –
= (x + y)² - 3xy
• Now put the values –
= (9)² - 3(20)
= 81 - 60
= 21
• Hence , x² - xy + y² = 21 .
Anonymous:
well done!
Similar questions