II sectheta - tantheta =1/3 then find seco + tano
Answers
Answered by
1
Answer:
3
Step-by-step explanation:
secA + tanA = 1/3
multiplying both sides by (secA + tanA)
(secA+tanA)(secA−tanA) =(1/3) (secA−tanA)
(secA)^2−(tanA)^2 = (1/3) (secA−tanA)
1 = (1/3) (secA−tanA) since, (secA)^2−(tanA)^2 = 1
so (secA−tanA) = 3
hope you got it
Answered by
0
Answer:
3
Step-by-step explanation:
secA + tanA = 1/3
multiplying both sides by (secA + tanA)
(secA+tanA)(secA−tanA) =(1/3) (secA−tanA)
(secA)^2−(tanA)^2 = (1/3) (secA−tanA)
1 = (1/3) (secA−tanA) since, (secA)^2−(tanA)^2 = 1
so (secA−tanA) = 3
hope you got it
Similar questions