ii) दोन संख्यांची बेरीज 45 आहे. मोठी संख्या लहान संख्येच्या
तिपटीपेक्षा 5 ने अधिक आहे. तर त्या संख्या काढा.
Answers
Given:
Two numbers add up to 45.
The Big number is 5 more than thrice the small number.
To find:
What are the two numbers?
Solution:
Let's assume,
"x" → the greater number
"y" → the smaller number
So, we have
The sum of the two numbers is 45
∴ Equation 1:→ x + y = 45
Also, we have
The greater number is 5 more than thrice the small number
∴ Equation 2:→
x = 5 + 3y
⇒ x - 3y = 5
Now, on subtracting equation (1) from (2), we get
x + y = 45
x - 3y = 5
- + -
---------------
4y = 40
---------------
∴ y = = 10
On substituting the value of y in eq. (1), we get
x + y = 45
⇒ x + 10 = 45
⇒ x = 45 - 10
⇒ x = 35
Thus, the two numbers are:
--------------------------------------------------------------------------------
Also View:
The difference of the squares of two numbers is 45 the square of the smallest number is 4 times the larger number determine the numbers
https://brainly.in/question/2823866
Sum of two number is 45 and the greater number is twice a smaller number. Find the numbers.
https://brainly.in/question/26338263
The sum of two numbers is 45 and their ratio is 7:8. find the numbers
https://brainly.in/question/333594
Answer:
मोठी संख्या = 35
लहान संख्या =10
Step-by-step explanation:
दिलेले: दोन संख्या 45 पर्यंत जोडतात.
मोठी संख्या लहान संख्येच्या तिप्पटपेक्षा 5 अधिक आहे.
शोधण्यासाठी: दोन संख्या काय आहेत?
उपाय:
चला गृहीत धरूया,
"x" - मोठी संख्या
"y" लहान संख्या
तर, आमच्याकडे आहे
दोन संख्यांची बेरीज 45 आहे .. समीकरण 1: → x + y = 45
तसेच, आमच्याकडे आहे
लहान संख्यापेक्षा तिप्पट मोठी संख्या 5 आहे
... समीकरण 2:
x = 5 + 3y
⇒ x - 3y = 5
आता, समीकरण (1) (2) मधून वजा केल्यावर आपल्याला मिळते
x + y = 45
x - 3y = 5
4y = 40
y = 40 4 = 10
Eq मध्ये y चे मूल्य बदलण्यावर. (1), आम्हाला मिळते
x + y = 45
⇒ x + 10 = 45
⇒x = 45 - 10
⇒x = 35
अशा प्रकारे, दोन संख्या आहेत:
मोठी संख्या → 35 आहे
लहान संख्या → 10 आहे
D