Physics, asked by hammdansubhani, 3 months ago

(ii) Two masses 26 kg and 24 kg are attached to the ends of a string which passes
over a frictionless pulley. 26 kg is lying over a smooth horizontal table. 24 kg
mass is moving vertically downward. Find the tension in the string and the
acceleration in the bodies.

Answers

Answered by Anonymous
86

TOPIC :- Law's of motion

\maltese\:\underline{\textsf{\textbf{AnsWer :}}}\:\maltese

⏭ First of all make an free body diagram "FBD" for the given question [ I've attached the figure refer it ].

Points to keep in mind while drawing FBD's :

✏ Assume all the objects to be point particle.

✏ Weight 'mg' acting vertically downward in direction.

✏Keep all the forces tail to tail.

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

CALCULATION

\longrightarrow\:\:\sf Acceleration= \dfrac{F_{net}}{M_{total}} \\

\longrightarrow\:\:\sf Acceleration= \dfrac{mg}{M_{total}} \\

\longrightarrow\:\:\sf Acceleration= \dfrac{mg}{m_1 + m_2} \\

\longrightarrow\:\:\sf Acceleration= \dfrac{(24)g}{24 + 26} \\

\longrightarrow\:\:\sf Acceleration= \dfrac{24 \times 10}{24 + 26} \\

\longrightarrow\:\:\sf Acceleration= \dfrac{240}{50} \\

\longrightarrow\:\: \underline{ \boxed{ \sf Acceleration= 4.8 \:  {ms}^{ - 2} }} \\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

✒Now, let's calculate the tension of the string. Refer figure No.2.

✒Here Acceleration (a) is acting vertically downward. So, dominating force will be mg.

✒By using Newton's second law of motion we have :

\longrightarrow\:\:\sf m_1g - T = m_1a \\

\longrightarrow\:\:\sf 24 \times 10 - T = 24 \times 4.8 \\

\longrightarrow\:\:\sf 240 - T = 115.2 \\

\longrightarrow\:\:\sf T = 240 - 115.2 \\

\longrightarrow\:\: \underline{ \boxed{\sf T = 124.8  \: N}}\\

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Here, I've given step by step explaination. You can calculate the tension in the string and Acceleration by given below formula directly :

Tension in the string :-

\dag\:\bf T = \dfrac{m_1m_2}{m_1 + m_2}g

Acceleration :-

\dag\:\bf a = \dfrac{m_1}{m_1 + m_2}g

\setlength{\unitlength}{1.0 cm}}\begin{picture}(12,4)\linethickness{3mm}\put(1,1){\line(1,0){6.8}}\end{picture}

Attachments:
Answered by XxHappiestWriterxX
16

Question :

(ii) Two masses 26 kg and 24 kg are attached to the ends of a string which passes

over a frictionless pulley. 26 kg is lying over a smooth horizontal table. 24 kg

mass is moving vertically downward. Find the tension in the string and the

acceleration in the bodies.

Let's Start :

  • At first we start doing the calculation of acceleration

  \:  \:  \:  \rightarrow\sf \: Acceleration =  \large \frac{Fɴᴇᴛ}{Mᴛᴏᴛᴀʟ}

 \:  \:  \:  \rightarrow \sf\: Acceleration =   \large\frac{mg}{Mᴛᴏᴛᴀʟ}

 \:  \:  \:  \rightarrow \sf\: Acceleration = \large \frac{mg}{m 1m2}

  \:  \:  \: \rightarrow \sf \: Acceleration =  \large\frac{(24)g}{24 + 26}

 \:  \:  \:  \rightarrow \sf \: Acceleration =  \large \frac{24 \times 10}{24 + 26}

 \:  \:  \:  \tt \rightarrow \: Acceleration =  \large\frac{240}{50}

 \:  \:  \:  \:  \:  \: { \underline{ \underline {\sf \: Acceleration =4.8m {s}^{ - 2} }}}

Now Let's do the tension of the String :

 \:  \:  \:  \:  \implies \sf \: m1g - T = m1a

 \:  \:  \:  \:  \:  \:\rightarrow \sf24×10-T=24×4.8

 \:  \:  \:  \:  \:  \: \implies\sf240-T=115.2

 \:  \:  \:  \:  \:  \: \implies\sf T=240-115.2

 \:  \:  \:  \:  \:  \:  \: \implies\sf T=124.8N

Other Information :

Some Formula's :

 \:  \:  \:  \:  \:  \implies  \pink{\sf \: T =   \large\frac{m1m2}{m1 + m2} }

 \:  \:  \:  \:  \:  \:  \implies \sf \red{a =  \large \frac{m1}{m1 + m2} }

Similar questions