English, asked by jintuadhikari38, 1 day ago

(ii) Uses of future continuous tense : চৰাইবিলাকে ৰাতিপুৱা গীত গাই থাকিব। দেউতাই সেই সময়ত বাতৰি কাকত পঢ়ি থাকিব। শিক্ষকে তেতিয়া শ্ৰেণীত ইংৰাজী ব্যাকৰণ পঢ়াই থাকিব। অহা শনিবাৰে এই সময়ত আমি খেল পথাৰত ক্রিকেট খেলি থাকিম। চাকিবিলাক গােটেই ৰাতি জ্বলি থাকিব। Translate into English (iii) Uses of future perfect tense :​

Answers

Answered by 19959580948
0

Explanation:

Earlier Mhamel , teacher french and language and language and a Brainliest is use of the above mentioned the correct one minute to you please send me the link

Answered by nishabm2003
1

Answer:

Clues

The digits must satisfy the two conditions.

Each digit consists of a different one from 0, 1, …, 8, 9 in a pair of 10 numbers.

Every ten digits are equal.

\large\underline{\large\underline{\text{Explanation}}}

Explanation

Let's find the sum of a pair consisting of 10 different digits.

\cdots\longrightarrow0+1+\cdots+8+9=\dfrac{1}{2}\times10\times9⋯⟶0+1+⋯+8+9=

2

1

×10×9

\cdots\longrightarrow0+1+\cdots+8+9=45.⋯⟶0+1+⋯+8+9=45.

Every ten digits repeat 11 times, so the sum is,

\cdots\longrightarrow45\times11=495.⋯⟶45×11=495.

So, the answer is,

\cdots\longrightarrow\boxed{495.}⋯⟶

495.

\large\underline{\large\underline{\text{Learn more}}}

Learn more

Where a,d,la,d,l are the first term, common difference, last term, the arithmetic terms are,

\cdots\longrightarrow a,a+d,a+2d,\cdots,l-2d,l-d,l⋯⟶a,a+d,a+2d,⋯,l−2d,l−d,l

Let S_{n}S

n

express the sum of nn consecutive numbers,

\begin{gathered}\begin{aligned}S_{n}&=a+(a+d)+(a+2d)+\cdots+(l-2d)+(l-d)+l\\S_{n}&=l+(l-d)+(l-2d)+\cdots+(a+2d)+(a+d)+a\end{aligned}\end{gathered}

S

n

S

n

=a+(a+d)+(a+2d)+⋯+(l−2d)+(l−d)+l

=l+(l−d)+(l−2d)+⋯+(a+2d)+(a+d)+a

\cdots\longrightarrow 2S_{n}=n(a+l)⋯⟶2S

n

=n(a+l)

\cdots\longrightarrow\boxed{S_{n}=\dfrac{1}{2}n(a+l).}⋯⟶

S

n

=

2

1

n(a+l).

Where a,n,la,n,l are the first term, number of terms, last term, the arithmetic series is,

\cdots\longrightarrow S_{n}=\dfrac{1}{2}n(a+l)⋯⟶S

n

=

2

1

n(a+l)

\cdots\longrightarrow S_{n}=\dfrac{1}{2}\{a+a+(n-1)d\}⋯⟶S

n

=

2

1

{a+a+(n−1)d}

\cdots\longrightarrow\boxed{S_{n}=\dfrac{1}{2}\{2a+(n-1)d\}.}⋯⟶

S

n

=

2

1

{2a+(n−1)d}.

Similar questions