Math, asked by aryatiwari1604, 2 months ago

(ii) What
(ii) What is the value of 313 + V3?
What is the value of 3/(64) ? ?
(v) What is the value of []
3 ?
Mathematics-IX​

Attachments:

Answers

Answered by MagicalBeast
6

To find :

  \sf \: Value \:  of  \:  \sqrt[3]{ {(64)}^{ - 2} }

Identity used :

 \sf \bullet \:  {a}^{ - m}  =  \dfrac{1}{ {a}^{m} }

\sf \bullet \:    \sqrt[m]{a}   \:   =   \:  {a}^{ \frac{1}{m} }

\sf \bullet \:  { ({a}^{m} )}^{ n}  =   {a}^{(mn)}

\sf \bullet \: \:  {1}^{m}  \:   =  \: 1

\sf \bullet \: \dfrac{ {a}^{m} }{ {b}^{m} }  =  { \bigg( \dfrac{a}{b} \bigg) }^{m}

Solution :

\sf \implies \sqrt[3]{ {(64)}^{ - 2} }

\sf \implies \sqrt[3]{ { \bigg( \dfrac{1}{64}  \bigg)}^{ 2} }

\sf \implies   \: { \: \bigg( \dfrac{1}{64}  \bigg)}^{  \frac{2}{3} }

\sf \implies   \: { \: \bigg( \dfrac{1}{(2 \times 2 \times 2 \times 2 \times 2 \times 2)}  \bigg)}^{  \frac{2}{3} }

\sf \implies   \: { \: \bigg( \dfrac{1}{ {2}^{6} }  \bigg)}^{  \frac{2}{3} }

\sf \implies   \: { \: \bigg( \dfrac{ {1}^{6} }{ {2}^{6} }  \bigg)}^{  \frac{2}{3} }

\sf \implies   \: { \bigg[ \:  { \bigg( \:  \dfrac{ {1}}{2 }  \bigg) } ^{6}    \: \bigg ] }^{  \frac{2}{3} }

\sf \implies   \:  \:  { \bigg( \:  \dfrac{ {1}}{2 }  \bigg) } ^{6 \times   \frac{2}{3} }

\sf \implies   \:  \:  { \bigg( \:  \dfrac{ {1}}{2 }  \bigg) } ^{ \frac{12}{3} }

\sf \implies   \:  \:  { \bigg( \:  \dfrac{ {1}}{2 }  \bigg) } ^{4}

\sf \implies   \:  \:   \:  \dfrac{  {1}^{4} }{2  ^{4 }}

\sf \implies   \:  \:   \bold{ \dfrac{ 1}{16}}

ANSWER : (1/16)

Answered by Anonymous
101

To find :-

 {\large{\sqrt[3]{(64)}^{ - 2}}}

Identify Used :

{\large\rm{ {a}^{ - m} }} =  {\sf{\frac{1}{ {a}^{m} }}}

 {\large\rm{\sqrt[m]{a}}} = {\sf{ {a}^{ \frac{1}{m} } }}

{\large\rm{( {a}^{m} )ⁿ}} =  {\sf{{a}^{(mn)} }}

 {\large\rm{{1}^{m}  = 1}}

 {\large\rm{\frac{ {a}^{m}  }{ {b}^{m} }}} =  {\sf{\binom{a}{b}^{m}}}

Solution :-

\large\green\implies  {\large{\sqrt[3] {(64)}^{ - 2} }}

\large\pink\implies  {\large{\sqrt[3] \binom{1}{64}²}}

\large\green\implies {\large{( \frac{1} {64})^{ \frac{2}{3} } }}

\large\pink\implies {\large{( \frac{1}{2 \times 2 \times 2 \times 2 \times 2  \times 2 )})^{ \frac{2}{3} }}}

\large\green\implies  {\large{\binom{1} {2⁶}^{ \frac{2}{3} } }}

\large\pink\implies  {\large{\binom{1⁶} {2⁶}^{ \frac{2}{3} } }}

\large\green\implies {\large{[( \frac{1}{2} )⁶ {]}^{ \frac{2}{3} } }}

\large\pink\implies {\large{( \frac{1}{2}  {)}^{6 \times \frac{2}{3} }}}

\large\green\implies {\large{( \frac{1}{2}  {)}^{ \frac{32}{2} } }}

\large\pink\implies {\large{( \frac{1}{2}  {)}^{4}}}

\large\green\implies {\large{ \frac{1⁴}{2⁴}}}

\large\pink\implies {\large\bf{\frac{1}{16}}}

Hence Proved,

  • {\large\bf{ \binom{1}{16} }} \large{\bf\green{✓}}
Similar questions