Math, asked by dineshatole36, 20 days ago

(ii) What is the focal distance of the point (4, 6) lies on the parabola y²=9x ?

Answers

Answered by priyanka18885
0

Step-by-step explanation:

Given, y^2 = 9xy

2

=9x

Comparing with standard equation of parabola : y^2 = 4axy

2

=4ax

4a = 9 or a = \frac {9}{4}

4

9

hence, Value for a = \frac {9}{4}a=

4

9

Therefore, Focus = s(\frac {9}{4}

4

9

, 0)

As we know the coordinates of end points of diameter, the equation of circle can be given by:

(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0(x−x

1

)(x−x

2

)+(y−y

1

)(y−y

2

)=0

⇒ (x-4)(x-\frac {9}{4}) + (y-6)(y-0) = 0(x−4)(x−

4

9

)+(y−6)(y−0)=0

⇒ (x-4)(4x-9) + 4y(y-6) = 0(x−4)(4x−9)+4y(y−6)=0

⇒ 4x^2 + 4y^2-25x-24y+36 = 04x

2

+4y

2

−25x−24y+36=0

⇒ x^2 + y^2 - \frac {25}{4}x - 6y + 9 = 0x

2

+y

2

4

25

x−6y+9=0

Comparing with general equation of circle:

x^2 + y^2 +2gx + 2fy + c = 0x

2

+y

2

+2gx+2fy+c=0

Which on solving yields-

g = \frac {-25}{8}

8

−25

, f = -3, c = 9

Radius, r = \sqrt {(\frac {25}{8})^2+9-9} = \frac {25}{8}

(

8

25

)

2

+9−9

=

8

25

Now right form of equation of normal :

y - y_1 = \frac {-y_1}{2a}(x-x_1)y−y

1

=

2a

−y

1

(x−x

1

)

⇒ (y-6) = \frac {-6}{\frac {9}{2}}(x-4)(y−6)=

2

9

−6

(x−4)

⇒ 3y-18 = -4x + 26

⇒ 4x + 3y -34 = 0 """ Equation of Normal

Therefore, Perpendicular distance of centre O (\frac {-25}{8}

8

−25

, 3) from normal = d

d = \left |\frac {4 \times \frac {25}{8}+3(3)-34}{\sqrt {4^2+32}}\right |

4

2

+32

8

25

+3(3)−34

= \left |\frac {\frac {25}{2}-25}{5}\right |

5

2

25

−25

d = \frac {5}{2}

2

5

We know perpendicular from center to chord bisects it

So, AB = AC

In ΔABO, By Pythagoras theorem,

AO^2 = OB^2 + AB^2AO

2

=OB

2

+AB

2

(\frac {25}{8})^2 = (\frac {5}{2})^2 + AB^2 = \frac {15}{4}(

8

25

)

2

=(

2

5

)

2

+AB

2

=

4

15

Answered by s9658515
0

here is your answer mate

Step-by-step explanation:

Answer is \frac {15}{4}

4

15

Step-by-step explanation:

Given, y^2 = 9xy

2

=9x

Comparing with standard equation of parabola : y^2 = 4axy

2

=4ax

4a = 9 or a = \frac {9}{4}

4

9

hence, Value for a = \frac {9}{4}a=

4

9

Therefore, Focus = s(\frac {9}{4}

4

9

, 0)

As we know the coordinates of end points of diameter, the equation of circle can be given by:

(x-x_1)(x-x_2) + (y-y_1)(y-y_2) = 0(x−x

1

)(x−x

2

)+(y−y

1

)(y−y

2

)=0

⇒ (x-4)(x-\frac {9}{4}) + (y-6)(y-0) = 0(x−4)(x−

4

9

)+(y−6)(y−0)=0

⇒ (x-4)(4x-9) + 4y(y-6) = 0(x−4)(4x−9)+4y(y−6)=0

⇒ 4x^2 + 4y^2-25x-24y+36 = 04x

2

+4y

2

−25x−24y+36=0

⇒ x^2 + y^2 - \frac {25}{4}x - 6y + 9 = 0x

2

+y

2

4

25

x−6y+9=0

Comparing with general equation of circle:

x^2 + y^2 +2gx + 2fy + c = 0x

2

+y

2

+2gx+2fy+c=0

Which on solving yields-

g = \frac {-25}{8}

8

−25

, f = -3, c = 9

Radius, r = \sqrt {(\frac {25}{8})^2+9-9} = \frac {25}{8}

(

8

25

)

2

+9−9

=

8

25

Now right form of equation of normal :

y - y_1 = \frac {-y_1}{2a}(x-x_1)y−y

1

=

2a

−y

1

(x−x

1

)

⇒ (y-6) = \frac {-6}{\frac {9}{2}}(x-4)(y−6)=

2

9

−6

(x−4)

⇒ 3y-18 = -4x + 26

⇒ 4x + 3y -34 = 0 """ Equation of Normal

Therefore, Perpendicular distance of centre O (\frac {-25}{8}

8

−25

, 3) from normal = d

d = \left |\frac {4 \times \frac {25}{8}+3(3)-34}{\sqrt {4^2+32}}\right |

4

2

+32

8

25

+3(3)−34

= \left |\frac {\frac {25}{2}-25}{5}\right |

5

2

25

−25

d = \frac {5}{2}

2

5

We know perpendicular from center to chord bisects it

So, AB = AC

In ΔABO, By Pythagoras theorem,

AO^2 = OB^2 + AB^2AO

2

=OB

2

+AB

2

(\frac {25}{8})^2 = (\frac {5}{2})^2 + AB^2 = \frac {15}{4}(

8

25

)

2

=(

2

5

)

2

+AB

2

=

4

15

Similar questions