Computer Science, asked by avasuhomallv, 6 months ago

II. Write the Java expressions for the following:
1. ab + bc + ca
2. a? + ab - b?
1
3. ut +
Cat2
2
UV
4.
U + V
5. (a + b)
6. 2(lb+bh+lh)
7. a²+6²
8. x3 + xyz +y​

Answers

Answered by Fenilshah
7

Answer:

Write a java expression for : 1). 2(lb+bh+lh) 2). a^3 + b^3 + 3ab(a-b)

The number of variable present in RHS of A. 2(lb+bh+lh) is_____.

play

If A=2(lb+bh+lh), then which of the following is/are true?

play

Using the formula S=2(lb+bh+lh), find S when l=12cm, b=8cm,and h=4 cm.

play

The total surface area of a cuboid is S=2(lb+bh+lh). Make l as the subject of the formula.

play

11.Factorise :a^(2)+b^(2)+2ab+2ac+2bc) Factorise: a^(3)-b^(3)1+3ab

play

Cube of a binomial: (a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)

play

Cube of a binomial: (a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)

play

a^3 - b^3 - 3a^2b+ 3ab^2, by, a^2 + b^2 - 2ab

play

Factorise a^3-b^3+1+3ab.

play

Factorize : a^(3) + b^(3) + 3ab -1

play

Find the maximum value of the expression a^(2)+b^(2)a^(2)+3ab+5b^(2)

play

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If (a+(1)/(a))^(2)=3, "then" a^(3)+(1)/(a^(3)) equats :

play

If a statement is true for all the values of the variable, such statements are called as identities. Some basic identities are : (1) (a+b)^(2)=a^(2)+2ab+b^(2)=(a-b)^(2)+4ab (3) a^(2)-b^(2)=(a+b)(a-b) (4) (a+b)^(3)=a^(3)+b^(3)+3ab(a+b) (6) a^(3)+b^(3)=(a+b)^(3)=3ab(a+b)=(a+b) (a^(2)-ab) (8) (a+b+c)^(2)=a^(2)+b^(2)+c^(2)+2ab+2bc+2ca=a^(2)+b^(2)+c^(2)+2abc((1)/(a)+(1)/(b)+(1)/(c)) (10) a^(3)+b^(3)+c^(3)-3abc=(a+b+c)(a^(2)+b^(2)+c^(2)-ab-bc-ca) =1/2(a+b+c)[(a-b)^(2)+(b-c)^(2)+(c-a)^(2)] If a+b+c=0,thena^(3)+b^(3)+c^(3)=3abc If x+(1)/(x)=2, thenx^(2)+(1)/(x^(2)) is equal to

play

Factorize: a^(3)+3a^(2)b+3ab^(2)+b^(3)-8

play

Factorize: a^(3)+3a^(2)b+3ab^(2)+b^(3)-8

play

Factorize: a^(3)-3a^(2)b+3ab^(2)-b^(3)+8

play

(a+b)^(3)-3ab(a+b)

play

Factorize: a^(3)x^(3)-3a^(2)bx^(2)+3ab^(2)x-b^(3)

play

If a+b=1 then prove that a^3+b^3+3ab=1

play

Resolve a^(3)-b^(3)+1+3ab into factors.

play

Similar questions