(ii) x(x-y)+y(y-2)+z(z-x)
Answers
Answered by
5
Answer:
Given:-
⇢ x (x - y) + y (y - 2) + z (z - x).
Find:-
⇢ Simplify the given expression.
Calculations:-
⇢ x (x - y) + y (y - 2) + z (z - x)
Firstly, distribute the given:-
⇢ (x)(x) + (x)(-y) + (y)(y) + (y)(-2) + (z)(z) + (z)(-x)
From the above equation,
⇢ x² + -xy + y² + -2y + z² + - xz
Note:-
⇢ x × x = x²
⇢ x × -y = -xy
⇢ y × y = y²
⇢ y × -2 = -2y
⇢ z × z = z²
⇢ z × -x = -zx
Answered by
29
Answer :
For finding the solution for the given problem ; we need to follow up the given steps :
- Take the variables and powers
- Take everything out of the brackets
- Put Multiplication signs between them by taking common .
- Convert the new variables into power forms.
- State the identity used.
Solution :
╭☞ x(x - y) + y(y - 2) + z (z - x)
╭☞x , x -y + y , y -2 + z , z-x
╭☞(x × x)+ (x × (- y)) + (y × y) + (y × -2 ) + (z × z) + (z × - x)
╭☞ x² + (-xy) + y² + (-2y) + z² + (-zx)
So the answer is :
➜ x² - xy + y² - 2y + z² - zx
Similar questions