Math, asked by vishal7664, 9 months ago

(ii) x(x-y)+y(y-2)+z(z-x)​

Answers

Answered by Anonymous
5

Answer:

Given:-

x (x - y) + y (y - 2) + z (z - x).

Find:-

⇢ Simplify the given expression.

Calculations:-

⇢ x (x - y) + y (y - 2) + z (z - x)

Firstly, distribute the given:-

⇢ (x)(x) + (x)(-y) + (y)(y) + (y)(-2) + (z)(z) + (z)(-x)

From the above equation,

⇢ x² + -xy + y² + -2y + z² + - xz

Note:-

⇢ x × x = x²

⇢ x × -y = -xy

⇢ y × y = y²

⇢ y × -2 = -2y

⇢ z × z = z²

⇢ z × -x = -zx

Answered by Glorious31
29

Answer :

For finding the solution for the given problem ; we need to follow up the given steps :

  • Take the variables and powers

  • Take everything out of the brackets

  • Put Multiplication signs between them by taking common .

  • Convert the new variables into power forms.

  • State the identity used.

Solution :

╭☞ x(x - y) + y(y - 2) + z (z - x)

╭☞x , x -y + y , y -2 + z , z-x

╭☞(x × x)+ (x × (- y)) + (y × y) + (y × -2 ) + (z × z) + (z × - x)

╭☞ x² + (-xy) + y² + (-2y) + z² + (-zx)

So the answer is :

- xy + - 2y + - zx

Similar questions